Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Applications of Yangian algebra in the entanglement and the decay channels of the mixed meson state

Qin Li-Guo Tian Li-Jun Wu Shi-Chao

Citation:

Applications of Yangian algebra in the entanglement and the decay channels of the mixed meson state

Qin Li-Guo, Tian Li-Jun, Wu Shi-Chao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Yangian, as an algebra beyond the Lie algebra, is an infinite dimensional algebra and a powerful mathematical method for inVestigating the new symmetry of quantum systems which are nonlinear and integrable. Based on the su(3) symmetry of the quarK-flaVor in the meson states and the transition property of the generators in Yangian algebra, we study the applications of Yangian algebra Y(su(3)) in the decay of three mixed meson states(, K and Ki0) composed of the three positiVe and negatiVe meson states (, K, K0 and K0). As the transition operators, the eight generators (Ī, Ŭ, V, Ī3 and Ī8) of Yangian algebra Y(su(3)) are acting on the three mixed meson states, respectiVely. Then, the possible decay channels and the changes of the entanglement are studied. Results show: (i) Under the effects of Ī3 and Ī8 within the Lie algebra on the three mixed meson states, the compositions of the final states after decays of the three mixed meson states are not changed as compared with the initial state. The entanglement is not changed for the decay of the mixed meson state with the effect of Ī^8, and the others are changed. (ii) Under the effects of the other six generators (Ī, Ŭ and V) beyond the Lie algebra on the three mixed meson states, the compositions of the final states after the decay are changed compared with the initial state. In the six possible decay channels, the two final states become single states without entanglement; two decay channels are absent; and the entanglements of the final states in the remaining two decays are changed. In addition, the entanglement of the final meson states in the possible six decay channels of the two types K mixed meson states, the charged (K+, K-) and neutral (K0, K0) meson states, are the same two by two. (iii) The three mixed meson states can be circularly transferred by the operators Ī, Ŭ and V, implying the obVious symmetry. In this paper the Yangian method is presented to study the possible decay channels of the mixed meson states and may be used to present a possible interpretation of the new unKnown or Known particle in the decay of the mixed meson.
      Corresponding author: Qin Li-Guo, lgqin@foxmail.com
    • Funds: Project supported by the Shanghai Distance Education Group Discipline Research Subject(Grant No. JF1406) and the National Natural Science Foundation of China (Grant Nos. 11347147, 11075101).
    [1]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [2]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [3]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [4]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [5]

    Curty M, Lewenstein M, Lkenhaus N 2004 Phys. Rev. Lett. 92 217903

    [6]

    Beige A, Braun D, Tregenna B, Knight P L 2001 Phys. Rev. Lett. 85 1762

    [7]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 83 4888

    [8]

    Childs A M, Chuang I L 2000 Phys. Rev. A 63 012306

    [9]

    Langford N K, Dalton R B, Harvey M D, Brien J L, Pryde G J, Gilchrist A, Bartlett S D, White A G 2004 Phys. Rev. Lett. 93 053601

    [10]

    Pasquinucci H B, Peres A 2000 Phys. Rev. Lett. 85 3313

    [11]

    Brukner Č, Zukowski M, Zeilinger A 2002 Phys. Rev. Lett. 89 197901

    [12]

    Ralph T C, Resch K, Gilchrist A 2007 Phys. Rev. A 75 022313

    [13]

    Collins D, Gisin N, Linden N, Massar S, Popescu S 2002 Phys. Rev. Lett. 88 040404

    [14]

    Gell-Mann M, Pais A 1955 Phys. Rev. 97 1387

    [15]

    Feldmann T, Kroll P 1998 Phys. Rev. D 58 114006

    [16]

    Magiera A, Machner H 2000 Nucl. Phys. A 674 515

    [17]

    Kroll P 2005 Modern Phys. Lett. A 20 2667

    [18]

    Shi Y 2006 Phys. Lett. B 641 75

    [19]

    Shi Y, Wu Y L 2008 Eur. Phys. J. C 55 477

    [20]

    Tian L J, Jin Y L, Jiang Y, Qin L G, 2011 Eur. Phys. J. C 71 1528

    [21]

    Uglov D 1998 Commun. Math. Phys. 191 663

    [22]

    Kundu A 1998 Phys. Lett. A 249 126

    [23]

    Bernard D 1993 Inter. J. Modern Phys. B 7 3517

    [24]

    Tian L J, Qin L G, Jiang Y, Zhang H B, Xue K 2010 Commun. Theor. Phys. 53 1039

    [25]

    Tian L J, Qin L G 2010 Eur. Phys. J. D 57 123

    [26]

    Polychronakos A 1992 Phys. Rev. Lett. 69 703

    [27]

    Haldane F D M, Ha Z N C, Talstra J C, Bernard D, Pasquier V 1992 Phys. Rev. Lett. 69 2021

    [28]

    Haldane F D M 1994 arXiv:cond-mat/9401001v3

    [29]

    Wadati M 1988 Phys. Rev. Lett. 60 635

    [30]

    Ge M L, Wang Y 1995 Phys. Rev. E 2919

    [31]

    Qin L G, Tian L J, Yang G H 2012 Eur. Phys. J. C 72 1934

    [32]

    Qin L G, Tian L J, Jiang Y, Zhang H B 2012 Chin. Phys. B 21 057101

    [33]

    Tian L J, Jin Y L, Jiang Y 2010 Phys. Lett. B 686 207

    [34]

    Gell-Mann M 1962 Phys. Rev. 125 1067

    [35]

    Neman Y 1961 Nucl. Phys. 26 222

    [36]

    Chari V, Pressley A 1990 Yangian and R-Matrix. L'Enseignement Matematique 36 p267

    [37]

    Chari V, Pressley A 1994 A Guide to Quantum Groups (Cambridge: Cambrige University Press)

    [38]

    Bai C M, Ge M L, Xue K 1998 Physical meaning of Yangian representation of Chari and Pressley, TH 1998-07, Tianjin, China

    [39]

    Pan F, Lu G Y, Draayer J P 2006 Inter. J. Modern Phys. B 20 1333

  • [1]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [2]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [3]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [4]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [5]

    Curty M, Lewenstein M, Lkenhaus N 2004 Phys. Rev. Lett. 92 217903

    [6]

    Beige A, Braun D, Tregenna B, Knight P L 2001 Phys. Rev. Lett. 85 1762

    [7]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 83 4888

    [8]

    Childs A M, Chuang I L 2000 Phys. Rev. A 63 012306

    [9]

    Langford N K, Dalton R B, Harvey M D, Brien J L, Pryde G J, Gilchrist A, Bartlett S D, White A G 2004 Phys. Rev. Lett. 93 053601

    [10]

    Pasquinucci H B, Peres A 2000 Phys. Rev. Lett. 85 3313

    [11]

    Brukner Č, Zukowski M, Zeilinger A 2002 Phys. Rev. Lett. 89 197901

    [12]

    Ralph T C, Resch K, Gilchrist A 2007 Phys. Rev. A 75 022313

    [13]

    Collins D, Gisin N, Linden N, Massar S, Popescu S 2002 Phys. Rev. Lett. 88 040404

    [14]

    Gell-Mann M, Pais A 1955 Phys. Rev. 97 1387

    [15]

    Feldmann T, Kroll P 1998 Phys. Rev. D 58 114006

    [16]

    Magiera A, Machner H 2000 Nucl. Phys. A 674 515

    [17]

    Kroll P 2005 Modern Phys. Lett. A 20 2667

    [18]

    Shi Y 2006 Phys. Lett. B 641 75

    [19]

    Shi Y, Wu Y L 2008 Eur. Phys. J. C 55 477

    [20]

    Tian L J, Jin Y L, Jiang Y, Qin L G, 2011 Eur. Phys. J. C 71 1528

    [21]

    Uglov D 1998 Commun. Math. Phys. 191 663

    [22]

    Kundu A 1998 Phys. Lett. A 249 126

    [23]

    Bernard D 1993 Inter. J. Modern Phys. B 7 3517

    [24]

    Tian L J, Qin L G, Jiang Y, Zhang H B, Xue K 2010 Commun. Theor. Phys. 53 1039

    [25]

    Tian L J, Qin L G 2010 Eur. Phys. J. D 57 123

    [26]

    Polychronakos A 1992 Phys. Rev. Lett. 69 703

    [27]

    Haldane F D M, Ha Z N C, Talstra J C, Bernard D, Pasquier V 1992 Phys. Rev. Lett. 69 2021

    [28]

    Haldane F D M 1994 arXiv:cond-mat/9401001v3

    [29]

    Wadati M 1988 Phys. Rev. Lett. 60 635

    [30]

    Ge M L, Wang Y 1995 Phys. Rev. E 2919

    [31]

    Qin L G, Tian L J, Yang G H 2012 Eur. Phys. J. C 72 1934

    [32]

    Qin L G, Tian L J, Jiang Y, Zhang H B 2012 Chin. Phys. B 21 057101

    [33]

    Tian L J, Jin Y L, Jiang Y 2010 Phys. Lett. B 686 207

    [34]

    Gell-Mann M 1962 Phys. Rev. 125 1067

    [35]

    Neman Y 1961 Nucl. Phys. 26 222

    [36]

    Chari V, Pressley A 1990 Yangian and R-Matrix. L'Enseignement Matematique 36 p267

    [37]

    Chari V, Pressley A 1994 A Guide to Quantum Groups (Cambridge: Cambrige University Press)

    [38]

    Bai C M, Ge M L, Xue K 1998 Physical meaning of Yangian representation of Chari and Pressley, TH 1998-07, Tianjin, China

    [39]

    Pan F, Lu G Y, Draayer J P 2006 Inter. J. Modern Phys. B 20 1333

  • [1] Chen Feng, Ren Gang. Analysis of quantum properties of two-mode coupled harmonic oscillator based on entangled state representation. Acta Physica Sinica, 2024, 73(23): 230302. doi: 10.7498/aps.73.20241303
    [2] Bai Jian-Nan, Han Song, Chen Jian-Di, Han Hai-Yan, Yan Dong. Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state. Acta Physica Sinica, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [3] Liu Teng, Lu Peng-Fei, Hu Bi-Ying, Wu Hao, Lao Qi-Feng, Bian Ji, Liu Yang, Zhu Feng, Luo Le. Phonon-mediated many-body quantum entanglement and logic gates in ion traps. Acta Physica Sinica, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [4] Zhong Yin-Yin, Pan Xiao-Zhou, Jing Jie-Tai. Quantum entanglement in coherent feedback system based on the cascaded four wave mixing processes. Acta Physica Sinica, 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [5] Yang Rong-Guo, Zhang Chao-Xia, Li Ni, Zhang Jing, Gao Jiang-Rui. Quantum manipulation of entanglement enhancement in cascaded four-wave-mixing process. Acta Physica Sinica, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [6] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [7] Wang Can-Can. Quantum entanglement and cosmological Friedmann equations. Acta Physica Sinica, 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [8] An Zhi-Yun, Li Zhi-Jian. Properties of distribution and entanglement in discrete-time quantum walk with percolation. Acta Physica Sinica, 2017, 66(13): 130303. doi: 10.7498/aps.66.130303
    [9] Su Yao-Heng, Chen Ai-Min, Wang Hong-Lei, Xiang Chun-Huan. Quantum entanglement and critical exponents in one-dimensional spin-1 bond-alternating XXZ chains. Acta Physica Sinica, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [10] Cong Mei-Yan, Yang Jing, Huang Yan-Xia. Effects of Dzyaloshinskii-Moriya interacton and decoherence on entanglement dynamics in Heisenberg spin chain system with different initial states. Acta Physica Sinica, 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [11] Cao Hui. Entanglement dynamics in Majorana representation. Acta Physica Sinica, 2013, 62(3): 030303. doi: 10.7498/aps.62.030303
    [12] Xia Jian-Ping, Ren Xue-Zao, Cong Hong-Lu, Wang Xu-Wen, He Shu. Quantum evolution of entanglement property in two-qubit and oscillator coupling system. Acta Physica Sinica, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [13] Zhao Jian-Hui, Wang Hai-Tao. Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study. Acta Physica Sinica, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [14] Liu Sheng-Xin, Li Sha-Sha, Kong Xiang-Mu. The effect of Dzyaloshinskii-Moriya interaction on entanglement in one-dimensional XY spin model. Acta Physica Sinica, 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [15] Chen Yu, Zou Jian, Li Jun-Gang, Shao Bin. Controlling the entanglement among three atoms by quantum-jump-based feedback. Acta Physica Sinica, 2010, 59(12): 8365-8370. doi: 10.7498/aps.59.8365
    [16] Zhou Nan-Run, Zeng Bin-Yang, Wang Li-Jun, Gong Li-Hua. Selective automatic repeat quantum synchronous communication protocol based on quantum entanglement. Acta Physica Sinica, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [17] Shan Chuan-Jia, Xia Yun-Jie. The entanglement character of two entangled atoms in Tavis-Cummings model. Acta Physica Sinica, 2006, 55(4): 1585-1590. doi: 10.7498/aps.55.1585
    [18] Xiong Heng-Na, Guo Hong, Jiang Jian, Chen Jun, Tang Li-Yan. The relation between the entanglement of two atoms and the entanglement of two-mode fields. Acta Physica Sinica, 2006, 55(6): 2720-2725. doi: 10.7498/aps.55.2720
    [19] Hu Yao-Hua, Fang Mao-Fa, Liao Xiang-Ping, Zheng Xiao-Juan. Quantum entanglement of the binomial field interacting with a cascade three-level atom. Acta Physica Sinica, 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [20] Wang Cheng-Zhi, Fang Miao-Fa. . Acta Physica Sinica, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
Metrics
  • Abstract views:  6653
  • PDF Downloads:  341
  • Cited By: 0
Publishing process
  • Received Date:  02 September 2015
  • Accepted Date:  18 October 2015
  • Published Online:  20 January 2016

/

返回文章
返回
Baidu
map