-
Ptychography is a new kind of lens-less imaging technology. What restricts the technique is the assumption of a multiplicative interaction between the illuminating coherent beam and the specimen, i.e., and the ptychography cannot be applied to samples no thicker than a few tens of micrometers in the case of visible-light imaging at micron-scale resolution. In the present work, we split a sample into axial sections, thereby realize three-dimensional ptychographic imaging of thick samples at the millimeter level in a series of computer simulations and optical experiments. Our simulation results reveal that by using single wavelength we cannot achieve good-quality images of thick samples. Thus it is necessary to introduce more wavelengths for illumination. With increasing the number of wavelengths, the imaging quality of three-dimensional thick samples can be enhanced continually. Then we make further study on the relationship between the imaging quality and the magnitude of wavelength in optical experiments by using two groups of samples with different thickness values. The results demonstrate that our experimental results are highly consistent with simulations. For our concrete configuration in this paper, the best results of imaging and separation may be obtained for the case of tri-wavelength. At the same time we make a reasonable explanation for the phenomenon of fold-over in the experiment. Our results are important and meaningful for the practical utilizing of three-dimensional ptychography of thick samples.
-
Keywords:
- thick samples /
- three-dimensional ptychography /
- iterative engine /
- multi-wavelength
[1] Rodenburg J M 2008 Adv. Imag. Electron Phys. 150 87
[2] Maiden A M, Rodenburg J M, Humphry M J 2010 Opt. Lett. 35 2585
[3] Wang Z H, Wang Y L, Li T, Shi Y S 2014 Acta Phys. Sin. 63 164204 (in Chinese) [王治昊, 王雅丽, 李拓, 史祎诗 2014 63 164204]
[4] Wang Y, Li T, Gao Q, Zhang S, Shi Y 2013 Opt. Eng. 52 091720
[5] Shi Y S, Wang Y L, Li T, Gao Q K, Wan H, Zhang S G, Wu Z B 2013 Chin. Phys. Lett. 30 074203
[6] Shi Y, Li T, Wang Y, Gao Q, Zhang S, Li H 2013 Opt. Lett. 38 1425
[7] Humphry M J, Kraus B, Hurst A C, Maiden A M, Rodenburg J M 2012 Nat. Commun. 3 730
[8] Rodenburg J, Hurst A, Cullis A, Dobson B, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801
[9] Hegerl R, Hoppe W 1972 Proceeding of the 5th European Congress on Electron Microscopy (London: Institute of Physics) p628
[10] Hoppe W 1969 Acta Crystallogr. A: Cryst. Phys. Diffrac. Theore. General Crystallogr. 25 495
[11] Fienup J R 1982 Appl. Opt. 21 2769
[12] Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795
[13] Faulkner H, Rodenburg J 2004 Phys. Rev. Lett. 93 023903
[14] Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256
[15] Maiden A M, Humphry M J, Rodenburg J M 2012 J. Opt. Soc. 29 1606
[16] Godden T M, Suman R, Humphry M J, Rodenburg J M, Maiden A M 2014 Opt. Express 22 12513
[17] Pan X C, Veetil S P, Liu C, Lin Q, Zhu J Q 2013 Chin. Opt. Lett. 11 021103
[18] Shi Y S, Wang Y L, Zhang S G 2013 Chin. Phys. Lett. 30 054203
[19] Wang Y L, Shi Y S, Li T, Gao Q K, Xiao J, Zhang S G 2013 Acta Phys. Sin. 62 064206 (in Chinese) [王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国 2013 62 064206]
[20] Shi Y S, Situ G H, Zhang J J 2008 Opt. Lett. 33 542
-
[1] Rodenburg J M 2008 Adv. Imag. Electron Phys. 150 87
[2] Maiden A M, Rodenburg J M, Humphry M J 2010 Opt. Lett. 35 2585
[3] Wang Z H, Wang Y L, Li T, Shi Y S 2014 Acta Phys. Sin. 63 164204 (in Chinese) [王治昊, 王雅丽, 李拓, 史祎诗 2014 63 164204]
[4] Wang Y, Li T, Gao Q, Zhang S, Shi Y 2013 Opt. Eng. 52 091720
[5] Shi Y S, Wang Y L, Li T, Gao Q K, Wan H, Zhang S G, Wu Z B 2013 Chin. Phys. Lett. 30 074203
[6] Shi Y, Li T, Wang Y, Gao Q, Zhang S, Li H 2013 Opt. Lett. 38 1425
[7] Humphry M J, Kraus B, Hurst A C, Maiden A M, Rodenburg J M 2012 Nat. Commun. 3 730
[8] Rodenburg J, Hurst A, Cullis A, Dobson B, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801
[9] Hegerl R, Hoppe W 1972 Proceeding of the 5th European Congress on Electron Microscopy (London: Institute of Physics) p628
[10] Hoppe W 1969 Acta Crystallogr. A: Cryst. Phys. Diffrac. Theore. General Crystallogr. 25 495
[11] Fienup J R 1982 Appl. Opt. 21 2769
[12] Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795
[13] Faulkner H, Rodenburg J 2004 Phys. Rev. Lett. 93 023903
[14] Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256
[15] Maiden A M, Humphry M J, Rodenburg J M 2012 J. Opt. Soc. 29 1606
[16] Godden T M, Suman R, Humphry M J, Rodenburg J M, Maiden A M 2014 Opt. Express 22 12513
[17] Pan X C, Veetil S P, Liu C, Lin Q, Zhu J Q 2013 Chin. Opt. Lett. 11 021103
[18] Shi Y S, Wang Y L, Zhang S G 2013 Chin. Phys. Lett. 30 054203
[19] Wang Y L, Shi Y S, Li T, Gao Q K, Xiao J, Zhang S G 2013 Acta Phys. Sin. 62 064206 (in Chinese) [王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国 2013 62 064206]
[20] Shi Y S, Situ G H, Zhang J J 2008 Opt. Lett. 33 542
Catalog
Metrics
- Abstract views: 7864
- PDF Downloads: 388
- Cited By: 0