Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of super-continuum terahertz source based on nano-structures and terahertz lab on-chip system

Zuo Jian Zhang Liang-Liang Gong Chen Zhang Cun-Lin

Citation:

Research progress of super-continuum terahertz source based on nano-structures and terahertz lab on-chip system

Zuo Jian, Zhang Liang-Liang, Gong Chen, Zhang Cun-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The terahertz applications of bio-materials and energetic materials are hindered by the low power-intensity of the terahertz output and the narrow band of terahertz emission. So the crucial part of the development of terahertz time-domain spectroscopy (TDS) systems is the new terahertz source with broadband frequency range and high power output. As to the free-space TDS system, the system is necessarily purged by dried nitrogen gas to remove the absorbed water vapor. In addition, the low detection sensitivity also exists because of the free-space interactions between the terahertz emission and the substances. To address these problems, terahertz lab on-chip system is proposed. The local field effect in the nano-structures of on-chip system can contribute to the detection of low concentration of the substance. The present paper is composed of two sections. Firstly, a new terahertz source based on the metal nano-film can produce an intense and broad-band terahertz-infrared emission, which is comprised of incoherent terahertz-infrared signals and coherent terahertz signals. This emission can cover more than 100 THz and has an output power of up to 10 mW. This optical phenomenon mainly arises from the incoherent thermal radiation effect. Secondly, the terahertz lab on-chip systems with different transmission lines and different substrates are clarified. There exists lower loss on the on-chip system with coplanar stripline structure and copolymer substrate. High sensitivity of biological detection in terahertz band of up to 2 THz can be achieved by using this system.
      Corresponding author: Zhang Cun-Lin, cunlin_zhang@cnu.edu.cn
    • Funds: Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2012YQ140005), the National Natural Science Foundation of China (Grant Nos. 11204190, 11374007, 11274233), and the National Basic Research Program of China (Grant No. 2014CB339806-1).
    [1]

    Mller A, Marschall S, Jensen O B, Fricke J, Wenzel H, Sumpf B, Andersen P E 2013 Laser Photon. Rev. 7 605

    [2]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G S, Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol. 1 54

    [3]

    Shumyatsky P, Alfano R R 2011 J. Biomed. Opt. 16 033001

    [4]

    Yeh K L, Hoffmann M C, Hebling J, Nelson K A 2007 Appl. Phys. Lett. 90 171121

    [5]

    Stepanov A G, Bonacina L, Chekalin S V, Wolf J P 2008 Opt. Lett. 33 2497

    [6]

    Hirori H, Doi A, Blanchard F, Tanaka K 2011 Appl. Phys. Lett. 98 091106

    [7]

    Park S G, Weiner A M, Melloch M R, Sider C W, Sider J L, Taylor A J 1999 IEEE J. Quant. Electron. 35 1257

    [8]

    Cook D J, Hochstrasser R M 2000 Opt. Lett. 25 1210

    [9]

    Xie X, Dai J, Zhang X C 2006 Phys. Rev. Lett. 96 075005

    [10]

    Kim K Y, Taylor A J, Glownia J H, Rodriguez G 2008 Nat. Photon. 2 605

    [11]

    Suvorov E V, Akhmedzhanov R A, Fadeev D A, Ilyakov I E, Mironov V A, Shishkin B V 2012 Opt. Lett. 37 2520

    [12]

    Kadlec F, Kuzel P, Coutaz J L 2012 Opt. Lett. 29 2674

    [13]

    Kadlec F, Kuzel P, Coutaz J L 2015 Opt. Lett. 30 1402

    [14]

    Ramakrishnan G, Planken P C M 2011 Opt. Lett. 36 2572

    [15]

    Welsh G H, Wynne K 2009 Opt. Express 17 2470

    [16]

    Welsh G H, Hunt N T, Wynne K 2007 Phys. Rev. Lett. 98 026803

    [17]

    Garwe F, Schmidt A, Zieger G, May T, Wynne K, Mller U, Zeisberger M, Paa W, Stafast H, Meyer H G 2011 Appl. Phys. B 102 551

    [18]

    Schmidt A, Garwe F, Hubner U, May T, Paa W, Zeisberger M, Zieger G, Stafast H 2012 Appl. Phys. B 109 631

    [19]

    Polyushkin D, Hendry E, Stone E, Barnes W 2011 Nano Lett. 11 4718

    [20]

    Ramakrishnan G, Kumar N, Planken P C M, Tanaka D, Kajikawa K 2012 Opt. Express 20 4067

    [21]

    Gao Y, Chen M K, Yang C E, Chang Y C, Yin S, Hui R, Ruffin P, Brantley C, Edwards E, Luo C 2009 J. Appl. Phys. 106 074302

    [22]

    Moskovits M 1985 Rev. Mod. Phys. 57 783

    [23]

    Zabel H, Stroud D 1992 Phy. Rev. B 46 8132

    [24]

    Aeschlimann M, Schmuttenmaer C A, Elsayed A H E, Miller R J D, Cao J, Gao Y, Mantell D A 1995 J. Chem. Phys. 102 8606

    [25]

    Vorobyev A Y, Guo C 2011 Nat. Sci. 3 488

    [26]

    Vorobyev A, Guo C 2006 Opt. Express 14 13113

    [27]

    Vorobyev A, Guo C 2005 Appl. Phy. Lett. 86 011916

    [28]

    Cunningham J, Byrne M B, Wood C D, Dazhang L 2010 Electron. Lett. 46 34

    [29]

    Le Ru E C, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794

    [30]

    Zhang L L, Mu K J, Zhou Y S, Wang H, Zhang C L, Zhang X C 2015 Sci. Rep. 5 12536

    [31]

    Vicario C, Monoszlai B, Jazbinsek M, Lee S H, Kwon O P, Hauri C P 2014 arXiv: 1407.7100 [physics. optics]

    [32]

    Li C Y, Seletskiy D V, Yang Z, Sheik-Bahae M 2015 Opt. Express 23 11436

    [33]

    Luo L, Chatzakis I, Wang J, Niesler F B P, Wegener M, Koschny T, Soukoulis C M 2014 Nat. Commun. 5 3055

    [34]

    Byrne M B, Cunningham J, Tych K, Burnett A D, Stringer M R, Wood C D, Dazhang L, Lachab M, Linfield E H, Davies A G 2008 Appl. Phys. Lett. 93 182904

    [35]

    Ohkubo T, Onuma M, Kitagawa J, Kadoya Y 2006 Appl. Phys. Lett. 88 212511

    [36]

    Byrne M B, Cunningham J, Tych K, Burnett A D, Stringer M R, Wood C D, Dazhang L, Lachab M, Linfield E H, Davies A G 2012 Opt. Express 20 8466

    [37]

    Auston D H, Smith P R 1982 Appl. Phys. Lett. 41 599

    [38]

    Ketchen M B, Grischkowsky D, Chen T C, Chi C C, Duling III I N, Halas N J, Halbout J M, Li G P 1986 Appl. Phys. Lett. 48 751

    [39]

    Heiliger H M, Vollebfirger B, Roskos H G, Heyt R, Ploogt K, Kurz H 1996 Appl. Phys. Lett. 69 2903

    [40]

    Russell C, Wood C D, Dazhang L, Burnett A D, Li L H, Linfield E H, Davies A G, Cunningham J E 2011 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) Houston, USA, October 2-7, 2011 p1

    [41]

    Baras T, Kleine-Ostmann T, Koch M 2003 J. Biol. Phys. 29 187

    [42]

    Yanagi S, Onuma M, Kitagawa J, Kadoya Y 2008 Appl. Phys. Express 1 012009

    [43]

    Kasai S, Tanabashi A, Kajiki K, Itsuji T, Kurosaka R, Yoneyama H, Yamashita M, Ito H, Ouchi T 2009 Appl. Phys. Express 2 062401

  • [1]

    Mller A, Marschall S, Jensen O B, Fricke J, Wenzel H, Sumpf B, Andersen P E 2013 Laser Photon. Rev. 7 605

    [2]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G S, Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol. 1 54

    [3]

    Shumyatsky P, Alfano R R 2011 J. Biomed. Opt. 16 033001

    [4]

    Yeh K L, Hoffmann M C, Hebling J, Nelson K A 2007 Appl. Phys. Lett. 90 171121

    [5]

    Stepanov A G, Bonacina L, Chekalin S V, Wolf J P 2008 Opt. Lett. 33 2497

    [6]

    Hirori H, Doi A, Blanchard F, Tanaka K 2011 Appl. Phys. Lett. 98 091106

    [7]

    Park S G, Weiner A M, Melloch M R, Sider C W, Sider J L, Taylor A J 1999 IEEE J. Quant. Electron. 35 1257

    [8]

    Cook D J, Hochstrasser R M 2000 Opt. Lett. 25 1210

    [9]

    Xie X, Dai J, Zhang X C 2006 Phys. Rev. Lett. 96 075005

    [10]

    Kim K Y, Taylor A J, Glownia J H, Rodriguez G 2008 Nat. Photon. 2 605

    [11]

    Suvorov E V, Akhmedzhanov R A, Fadeev D A, Ilyakov I E, Mironov V A, Shishkin B V 2012 Opt. Lett. 37 2520

    [12]

    Kadlec F, Kuzel P, Coutaz J L 2012 Opt. Lett. 29 2674

    [13]

    Kadlec F, Kuzel P, Coutaz J L 2015 Opt. Lett. 30 1402

    [14]

    Ramakrishnan G, Planken P C M 2011 Opt. Lett. 36 2572

    [15]

    Welsh G H, Wynne K 2009 Opt. Express 17 2470

    [16]

    Welsh G H, Hunt N T, Wynne K 2007 Phys. Rev. Lett. 98 026803

    [17]

    Garwe F, Schmidt A, Zieger G, May T, Wynne K, Mller U, Zeisberger M, Paa W, Stafast H, Meyer H G 2011 Appl. Phys. B 102 551

    [18]

    Schmidt A, Garwe F, Hubner U, May T, Paa W, Zeisberger M, Zieger G, Stafast H 2012 Appl. Phys. B 109 631

    [19]

    Polyushkin D, Hendry E, Stone E, Barnes W 2011 Nano Lett. 11 4718

    [20]

    Ramakrishnan G, Kumar N, Planken P C M, Tanaka D, Kajikawa K 2012 Opt. Express 20 4067

    [21]

    Gao Y, Chen M K, Yang C E, Chang Y C, Yin S, Hui R, Ruffin P, Brantley C, Edwards E, Luo C 2009 J. Appl. Phys. 106 074302

    [22]

    Moskovits M 1985 Rev. Mod. Phys. 57 783

    [23]

    Zabel H, Stroud D 1992 Phy. Rev. B 46 8132

    [24]

    Aeschlimann M, Schmuttenmaer C A, Elsayed A H E, Miller R J D, Cao J, Gao Y, Mantell D A 1995 J. Chem. Phys. 102 8606

    [25]

    Vorobyev A Y, Guo C 2011 Nat. Sci. 3 488

    [26]

    Vorobyev A, Guo C 2006 Opt. Express 14 13113

    [27]

    Vorobyev A, Guo C 2005 Appl. Phy. Lett. 86 011916

    [28]

    Cunningham J, Byrne M B, Wood C D, Dazhang L 2010 Electron. Lett. 46 34

    [29]

    Le Ru E C, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794

    [30]

    Zhang L L, Mu K J, Zhou Y S, Wang H, Zhang C L, Zhang X C 2015 Sci. Rep. 5 12536

    [31]

    Vicario C, Monoszlai B, Jazbinsek M, Lee S H, Kwon O P, Hauri C P 2014 arXiv: 1407.7100 [physics. optics]

    [32]

    Li C Y, Seletskiy D V, Yang Z, Sheik-Bahae M 2015 Opt. Express 23 11436

    [33]

    Luo L, Chatzakis I, Wang J, Niesler F B P, Wegener M, Koschny T, Soukoulis C M 2014 Nat. Commun. 5 3055

    [34]

    Byrne M B, Cunningham J, Tych K, Burnett A D, Stringer M R, Wood C D, Dazhang L, Lachab M, Linfield E H, Davies A G 2008 Appl. Phys. Lett. 93 182904

    [35]

    Ohkubo T, Onuma M, Kitagawa J, Kadoya Y 2006 Appl. Phys. Lett. 88 212511

    [36]

    Byrne M B, Cunningham J, Tych K, Burnett A D, Stringer M R, Wood C D, Dazhang L, Lachab M, Linfield E H, Davies A G 2012 Opt. Express 20 8466

    [37]

    Auston D H, Smith P R 1982 Appl. Phys. Lett. 41 599

    [38]

    Ketchen M B, Grischkowsky D, Chen T C, Chi C C, Duling III I N, Halas N J, Halbout J M, Li G P 1986 Appl. Phys. Lett. 48 751

    [39]

    Heiliger H M, Vollebfirger B, Roskos H G, Heyt R, Ploogt K, Kurz H 1996 Appl. Phys. Lett. 69 2903

    [40]

    Russell C, Wood C D, Dazhang L, Burnett A D, Li L H, Linfield E H, Davies A G, Cunningham J E 2011 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) Houston, USA, October 2-7, 2011 p1

    [41]

    Baras T, Kleine-Ostmann T, Koch M 2003 J. Biol. Phys. 29 187

    [42]

    Yanagi S, Onuma M, Kitagawa J, Kadoya Y 2008 Appl. Phys. Express 1 012009

    [43]

    Kasai S, Tanabashi A, Kajiki K, Itsuji T, Kurosaka R, Yoneyama H, Yamashita M, Ito H, Ouchi T 2009 Appl. Phys. Express 2 062401

  • [1] Biological effects of terahertz waves. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20211996
    [2] Zhu Zhao-Zhao, Feng Zheng, Cai Jian-Wang. Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [3] Peng Xiao-Yu, Zhou Huan. Biological effects of terahertz waves. Acta Physica Sinica, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [4] Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211831
    [5] Ren Ze-Ping, Chen Zai-Gao, Chen Jian-Nan, Qiao Hai-Liang. Effects of frequency-dependent surface impedance on the vacuum electronic terahertz sources. Acta Physica Sinica, 2020, 69(4): 040701. doi: 10.7498/aps.69.20191488
    [6] Feng Zheng, Wang Da-Cheng, Sun Song, Tan Wei. Spintronic terahertz emitter: Performance, manipulation, and applications. Acta Physica Sinica, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [7] Wang Hang-Tian, Zhao Hai-Hui, Wen Liang-Gong, Wu Xiao-Jun, Nie Tian-Xiao, Zhao Wei-Sheng. High-performance THz emission: From topological insulator to topological spintronics. Acta Physica Sinica, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [8] Xu Yong, Zhang Fan, Zhang Xiao-Qiang, Du Yin-Chang, Zhao Hai-Hui, Nie Tian-Xiao, Wu Xiao-Jun, Zhao Wei-Sheng. Research advances in spintronic terahertz sources. Acta Physica Sinica, 2020, 69(20): 200703. doi: 10.7498/aps.69.20200623
    [9] Li Jin-Feng, Wan Ting, Wang Teng-Fei, Zhou Wen-Hui, Xin Jie, Chen Chang-Shui. Electrons leakage from upper laser level to high energy levels in active regions of terahertz quantum cascade lasers. Acta Physica Sinica, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [10] Chai Lu, Niu Yue, Li Yan-Feng, Hu Ming-Lie, Wang Qing-Yue. Recent progress of tunable terahertz sources based on difference frequency generation. Acta Physica Sinica, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [11] Zhao Wen-Juan, Chen Zai-Gao, Guo Wei-Jie. Influence of slow wave structure explosive emission on high-power surface wave oscillator. Acta Physica Sinica, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [12] Liang Wen-Long, Wang Yi-Man, Liu Wei, Li Hong-Yi, Wang Jin-Shu. Study of mini-themionic electron sources for vacuum electron THz devices. Acta Physica Sinica, 2014, 63(5): 057901. doi: 10.7498/aps.63.057901
    [13] Si Li-Ming, Hou Ji-Xuan, Liu Yong, Lü Xin. Extraction of effective constitutive parameters of active terahertz metamaterial with negative differential resistance carbon nanotubes. Acta Physica Sinica, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [14] Huang Jing-Guo, Lu Jin-Xing, Zhou Wei, Tong Jing-Chao, Huang Zhi, Chu Jun-Hao. Investigation of high power terahertz emission in gap crystal based on collinear difference frequency generation. Acta Physica Sinica, 2013, 62(12): 120704. doi: 10.7498/aps.62.120704
    [15] Liu Wei-Hao, Zhang Ya-Xin, Zhou Jun, Gong Sen, Liu Sheng-Gang. Radiation from the unsymmetrical modes of the periodical waveguide structure excited by eccentric electron beam. Acta Physica Sinica, 2012, 61(23): 234209. doi: 10.7498/aps.61.234209
    [16] Ma Feng-Ying, Chen Ming, Liu Xiao-Li, Liu Jian-Li, Chi Quan, Du Yan-Li, Guo Mao-Tian, Yuan Bin. Design and characterization of a terahertz microcavity structure. Acta Physica Sinica, 2012, 61(11): 114205. doi: 10.7498/aps.61.114205
    [17] Liu Wei-Hao, Zhang Ya-Xin, Hu Min, Zhou Jun, Liu Sheng-Gang. Mechanism study of a THz source using field emission array. Acta Physica Sinica, 2012, 61(12): 127901. doi: 10.7498/aps.61.127901
    [18] Qi Chun-Chao, Ouyang Zheng-Biao. Comprehensive Survey for the Frontier Disciplines Latest advances in THz coherent light source pumped by 600—2000 nm waveband pumped source. Acta Physica Sinica, 2011, 60(9): 090704. doi: 10.7498/aps.60.090704
    [19] Gao Peng, Booske John H., Yang Zhong-Hai, Li Bin, Xu Li, He Jun, Gong Yu-Bin, Tian Zhong. Physics and simulation of terahertz folded waveguide traveling wave tube regenerative feedback oscillators. Acta Physica Sinica, 2010, 59(12): 8484-8489. doi: 10.7498/aps.59.8484
    [20] Zhang Xian-Bin, Shi Wei. Study of imaging system based on the tunable terahertz wave source with quasi-Gaussian beam output. Acta Physica Sinica, 2008, 57(8): 4984-4990. doi: 10.7498/aps.57.4984
Metrics
  • Abstract views:  7797
  • PDF Downloads:  721
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2015
  • Accepted Date:  08 December 2015
  • Published Online:  05 January 2016

/

返回文章
返回
Baidu
map