-
太赫兹频段在电磁波谱上位于红外和微波之间, 兼具宽带性、低能性、高透性、指纹性等诸多优势特性, 在航空航天、无线通信、国防安全、材料科学、生物医疗等领域具有重要的应用前景. 太赫兹科学与技术的发展和应用在很大程度上受限于源的水平, 新型太赫兹辐射源的机理研究和器件研制至关重要. 自旋太赫兹发射不仅从物理上提供了操控飞秒自旋流的可能, 而且有望成为下一代超宽带、低成本、高效率新型太赫兹源的优选. 本文系统地综述了自旋电子太赫兹源的发展历程、实验装置、发射机理、材料选择, 以及前景展望, 重点介绍了飞秒激光诱导的超快自旋流、铁磁和非磁界面的自旋电荷转换以及太赫兹发射等物理机制方面的研究进展. 本文还分别介绍了基于重金属、拓扑绝缘体、Rashba界面和半导体等体系的自旋电子太赫兹源.The terahertz frequency band is located between infrared and microwave in the electromagnetic spectrum. The interesting properties such as broadband, low energy, high permeability, fingerprint, etc. make terahertz wave important for applications in the fields of aerospace, wireless communications, security, materials science, biomedicine, etc. The development and application of terahertz science and technology are largely limited by the terahertz sources, therefore it is crucial to develop new terahertz radiation sources. Recently, it was shown that terahertz spintronic not only provides the possibility of physically controlling the femtosecond spin current, but also expects to be the next-generation ultra-wideband, low-cost, high-efficiency terahertz sources. In this paper we systematically review the historical development, experimental devices, emission mechanisms, material selections, and future prospects of the spintronic terahertz sources. We present the research advances in the physical mechanisms of ultrafast spin current induced by femtosecond laser, the spin charge conversion at ferromagnetic and non-magnetic interfaces, and the terahertz emission triggered by ultrafast pulses. This review also introduces spintronic terahertz sources based on heavy metals, topological insulators, Rashba interfaces, and semiconductor systems.
-
Keywords:
- terahertz source /
- ferromagnetic/non-magnetic heterostructure /
- ultrafast demagnetization /
- spin-charge conversion
[1] Beaurepaire E, Merle J C, Daunois A, Bigot J 1996 Phys. Rev. Lett. 76 4250
Google Scholar
[2] Carva K, Battiato M, Oppeneer P M 2011 Nat. Phys. 7 665
Google Scholar
[3] Koopmans B, van Kampen M, Kohlhepp J T, de Jonge W J M 2000 Phys. Rev. Lett. 85 844
Google Scholar
[4] Zhang G P, Hübner W, Lefkidis G, Bai Y, George T F 2009 Nat. Phys. 5 499
Google Scholar
[5] Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465
Google Scholar
[6] Nishitani J, Kozuki K, Nagashima T, Hangyo M 2010 Appl. Phys. Lett. 96 221906
Google Scholar
[7] Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nat. Photonics 5 31
Google Scholar
[8] Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256
Google Scholar
[9] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483
Google Scholar
[10] Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031
Google Scholar
[11] Yang K H, Richards P L, Shen Y R 1971 Appl. Phys. Lett. 19 320
Google Scholar
[12] Mourou G, Stancampiano C V, Blumenthal D 1981 Appl. Phys. Lett. 38 470
Google Scholar
[13] Auston D H, Cheung K P, Valdmanis J A, Kleinman D A 1984 Phys. Rev. Lett. 53 1555
Google Scholar
[14] Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523
Google Scholar
[15] Fattinger Ch, Grischkowsky D 1988 Appl. Phys. Lett. 53 1480
Google Scholar
[16] Shalaby M, Hauri C P 2015 Nat. Commun. 6 5976
Google Scholar
[17] Tomasino A, Parisi A, Stivala S, Livreri P, Cino A C, Busacca A C, Peccianti M, Morandotti R 2013 Sci. Rep. 3 1
Google Scholar
[18] Zhang X C, Ma X F, Jin Y, Lu T M, Boden E P, Phelps P D, Stewart K R, Yakymyshyn C P 1992 Appl. Phys. Lett. 61 3080
Google Scholar
[19] Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Kläui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402
Google Scholar
[20] Ignatyeva D O, Davies C S, Sylgacheva D A, Tsukamoto A, Yoshikawa H, Kapralov P O, Kirilyuk A, Belotelov V I, Kimel A V 2019 Nat. Commun. 10 4786
Google Scholar
[21] Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965
Google Scholar
[22] Wang B, Shan S, Wu X, Wang C, Pandey C, Nie T, Zhao W, Li Y, Miao J, Wang L 2019 Appl. Phys. Lett. 115 121104
Google Scholar
[23] Koopmans B, Malinowski G, Longa F D, Steiauf D, Fähnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259
Google Scholar
[24] Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855
Google Scholar
[25] Choi G M, Min B C, Lee K J, Cahill D G 2014 Nat. Commun. 5 4334
Google Scholar
[26] Bergeard N, Hehn M, Mangin S, Lengaigne G, Montaigne F, Lalieu M L M, Koopmans B, Malinowski G 2016 Phys. Rev. Lett. 117 147203
Google Scholar
[27] Xu Y, Deb M, Malinowski G, Hehn M, Zhao W, Mangin S 2017 Adv. Mater. 29 1703474
Google Scholar
[28] Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203
Google Scholar
[29] Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404
Google Scholar
[30] Nenno D M, Rethfeld B, Schneider H C 2018 Phys. Rev. B 98 224416
Google Scholar
[31] Choi G M, Moon C H, Min B C, Lee K J, Cahill D G 2015 Nat. Phys. 11 576
Google Scholar
[32] Seifert T S, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Münzenberg M, Goennenwein S T B, Woltersdorf G, Rethfeld B, Brouwer P W, Wolf M, Kläui M, Kampfrath T 2018 Nat. Commun. 9 2899
Google Scholar
[33] Beigang R, Papaioannou E T, Scheuer L, Keller S, Torosyan G, Rahm M, Sokoluk D, Talara M, Oda Y, Kitahara H, Afalla J, Mag-usara V K, Tani M 2019 Terahertz RF Millim. Submillimeter-Wave Technol. Appl. XⅡ San Francisco, California, United States, February 2–7, 2019 p109170O
[34] Herapath R I, Hornett S M, Seifert T S, Jakob G, Kläui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107
Google Scholar
[35] Papaioannou E Th, Torosyan G, Keller S, Scheuer L, Battiato M, Mag-Usara V K, L’huillier J, Tani M, Beigang R 2018 IEEE Trans. Magn. 54 1
Google Scholar
[36] Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J X, Sun H, Wang S, Song J C W, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347
Google Scholar
[37] Mangin S, Gottwald M, Lambert C H, Steil D, Uhlí? V, Pang L, Hehn M, Alebrand S, Cinchetti M, Malinowski G, Fainman Y, Aeschlimann M, Fullerton E E 2014 Nat. Mater. 13 286
Google Scholar
[38] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing Th 2007 Phys. Rev. Lett. 99 047601
Google Scholar
[39] Němec P, Rozkotová E, Tesařová N, Trojánek F, De Ranieri E, Olejník K, Zemen J, Novák V, Cukr M, Malý P, Jungwirth T 2012 Nat. Phys. 8 411
Google Scholar
[40] Ramsay A J, Roy P E, Haigh J A, Otxoa R M, Irvine A C, Janda T, Campion R P, Gallagher B L, Wunderlich J 2015 Phys. Rev. Lett. 114 067202
Google Scholar
[41] Freimuth F, Blügel S, Mokrousov Y 2016 Phys. Rev. B 94 144432
Google Scholar
[42] Choi G M, Schleife A, Cahill D G 2017 Nat. Commun. 8 15085
Google Scholar
[43] Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blügel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455
Google Scholar
[44] Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing Th, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415
Google Scholar
[45] Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207
Google Scholar
[46] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
Google Scholar
[47] Hoffmann A 2013 IEEE Trans. Magn. 49 5172
Google Scholar
[48] Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213
Google Scholar
[49] Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910
Google Scholar
[50] Wunderlich J, Kaestner B, Sinova J, Jungwirth T 2005 Phys. Rev. Lett. 94 047204
Google Scholar
[51] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555
Google Scholar
[52] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189
Google Scholar
[53] Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509
Google Scholar
[54] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778
Google Scholar
[55] Shen K, Vignale G, Raimondi R 2014 Phys. Rev. Lett. 112 096601
Google Scholar
[56] Deorani P, Son J, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2014 Phys. Rev. B 90 094403
Google Scholar
[57] Rojas-Sánchez J C, Oyarzún S, Fu Y, Marty A, Vergnaud C, Gambarelli S, Vila L, Jamet M, Ohtsubo Y, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Reyren N, George J M, Fert A 2016 Phys. Rev. Lett. 116 096602
Google Scholar
[58] Shiomi Y, Nomura K, Kajiwara Y, Eto K, Novak M, Segawa K, Ando Y, Saitoh E 2014 Phys. Rev. Lett. 113 196601
Google Scholar
[59] Sun R, Yang S, Yang X, Vetter E, Sun D, Li N, Su L, Li Y, Li Y, Gong Z, Xie Z, Hou K, Gul Q, He W, Zhang X, Cheng Z 2019 Nano Lett. 19 4420
Google Scholar
[60] Gambardella P, Miron I M 2011 Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369 3175
Google Scholar
[61] Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871
Google Scholar
[62] Rojas-Sánchez J C, Vila L, Desfonds G, Gambarelli S, Attané J P, de Teresa J M, Magén C, Fert A 2013 Nat. Commun. 4 2944
Google Scholar
[63] Huang L, Kim J W, Lee S H, Kim S D, Tien V M, Shinde K P, Shim J H, Shin Y, Shin H J, Kim S, Park J, Park S Y, Choi Y S, Kim H J, Hong J I, Kim D E, Kim D H 2019 Appl. Phys. Lett. 115 142404
Google Scholar
[64] Huisman T J, Mikhaylovskiy R V, Tsukamoto A, Rasing Th, Kimel A V 2015 Phys. Rev. B 92 104419
Google Scholar
[65] Huisman T J, Rasing T 2016 J. Phys. Soc. Jpn. 86 011009
Google Scholar
[66] Nenno D M, Binder R, Schneider H C 2019 Phys. Rev. Appl. 11 054083
Google Scholar
[67] Zhang S, Jin Z, Zhu Z, Zhu W, Zhang Z, Ma G, Yao J 2017 J. Phys. Appl. Phys. 51 034001
Google Scholar
[68] Chen M, Mishra R, Wu Y, Lee K, Yang H 2018 Adv. Opt. Mater. 6 1800430
Google Scholar
[69] Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Opt. Mater. 4 1944
Google Scholar
[70] Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247
Google Scholar
[71] Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311
Google Scholar
[72] Nenno D M, Scheuer L, Sokoluk D, Keller S, Torosyan G, Brodyanski A, Lösch J, Battiato M, Rahm M, Binder R H, Schneider H C, Beigang R, Papaioannou E T 2019 Sci. Rep. 9 1
Google Scholar
[73] Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401
Google Scholar
[74] Huisman T J, Ciccarelli C, Tsukamoto A, Mikhaylovskiy R V, Rasing Th, Kimel A V 2017 Appl. Phys. Lett. 110 072402
Google Scholar
[75] Seifert T, Martens U, Günther S, Schoen M A W, Radu F, Chen X Z, Lucas I, Ramos R, Aguirre M H, Algarabel P A, Anadón A, Körner H S, Walowski J, Back C, Ibarra M R, Morellón L, Saitoh E, Wolf M, Song C, Uchida K, Münzenberg M, Radu I, Kampfrath T 2017 SPIN 07 1740010
Google Scholar
[76] Schneider R, Fix M, Heming R, Michaelis de Vasconcellos S, Albrecht M, Bratschitsch R 2018 ACS Photonics 5 3936
Google Scholar
[77] Schneider R, Fix M, Bensmann J, Michaelis de Vasconcellos S, Albrecht M, Bratschitsch R 2019 Appl. Phys. Lett. 115 152401
Google Scholar
[78] Cramer J, Seifert T, Kronenberg A, Fuhrmann F, Jakob G, Jourdan M, Kampfrath T, Kläui M 2018 Nano Lett. 18 1064
Google Scholar
[79] Khang N H D, Ueda Y, Hai P N 2018 Nat. Mater. 17 808
Google Scholar
[80] Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356
Google Scholar
[81] McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P, Gedik N 2012 Nat. Nanotechnol. 7 96
Google Scholar
[82] Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Münzenberg M, Perfetti L, Kampfrath T 2016 Nat. Commun. 7 13259
Google Scholar
[83] Seifert P, Vaklinova K, Kern K, Burghard M, Holleitner A 2017 Nano Lett. 17 973
Google Scholar
[84] Fang Z, Wang H, Wu X, Shan S, Wang C, Zhao H, Xia C, Nie T, Miao J, Zhang C, Zhao W, Wang L 2019 Appl. Phys. Lett. 115 191102
Google Scholar
[85] Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801
Google Scholar
[86] Zhang Q, Hong D, Liu C, Schaller R, Fong D, Bhattacharya A, Wen H 2019 Conf. Lasers Electro-Opt. San Jose, California, May 5–10, 2019 pFM4D.7
[87] Husain S, Kumar A, Kumar P, Kumar A, Barwal V, Behera N, Choudhary S, Svedlindh P, Chaudhary S 2018 Phys. Rev. B 98 180404
Google Scholar
[88] Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514
Google Scholar
[89] Battiato M, Held K 2016 Phys. Rev. Lett. 116 196601
Google Scholar
[90] Hibberd M T, Lake D S, Johansson N A B, Thomson T, Jamison S P, Graham D M 2019 Appl. Phys. Lett. 114 031101
Google Scholar
[91] Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487
Google Scholar
[92] Chen X, Wu X, Shan S, Guo F, Kong D, Wang C, Nie T, Pandey C, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Appl. Phys. Lett. 115 221104
Google Scholar
[93] Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Express 11 092101
Google Scholar
[94] Chen M, Wu Y, Liu Y, Lee K, Qiu X, He P, Yu J, Yang H 2019 Adv. Opt. Mater. 7 1801608
Google Scholar
[95] Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Kläui M, Turchinovich D 2015 Nat. Phys. 11 761
Google Scholar
[96] Zhang S, Li Q, Dai Y, Lin X, Ma G, Jin Z, Zhu W, Zhang Z, Yao J 2018 2018 43rd Int. Conf. Infrared Millim. Terahertz Waves IRMMW-THz Nagoya, Japan, September 9–14, 2018 p1
[97] Mikhaylovskiy R V, Hendry E, Kruglyak V V, Pisarev R V, Rasing Th, Kimel A V 2014 Phys. Rev. B 90 184405
Google Scholar
[98] Mikhaylovskiy R V, Hendry E, Secchi A, Mentink J H, Eckstein M, Wu A, Pisarev R V, Kruglyak V V, Katsnelson M I, Rasing T, Kimel A V 2015 Nat. Commun. 6 8190
Google Scholar
-
图 3 面内磁化的铁磁薄膜FM被飞秒激光激发, 自旋极化的非平衡热电子注入非磁层. 根据逆自旋霍尔效应, 多数电子和少数电子在不同方向偏转, 从而将纵向自旋流转换为横向的电荷流, 产生了太赫兹发射
Fig. 3. The in-plane magnetized ferromagnetic layer is excited by the femtosecond laser, which induces the injection of non-equilibrium spin-polarized hot electrons into the non-magnetic layer. The spin-majority electrons and the spin-minority electrons are deflected into opposite directions due to inverse spin Hall effect. The longitudinal spin current is converted into a transverse electric current and leads to the terahertz emission.
图 4 (a)拓扑绝缘体表面的能量色散关系图; (b) Rashba界面的能量色散关系图, Rashba界面态和拓扑绝缘体表面态中形成了强烈的自旋-动量锁定; (c)拓扑绝缘体表面的逆Edelstein效应; (d) Rashba界面的逆Edelstein效应, 注入y极化的自旋流密度诱导出x方向的电荷流[57]
Fig. 4. (a) Energy dispersion of the Rashba interface; (b) energy dispersion of the topological insulator. Strong spin-momentum locking can be observed in interface states of the Rashba interface and surface states of the topological insulator; (c) the inverse Edelstein effect of Rashba interfaces; (d) the inverse Edelstein effect of topological insulator surface states. The y-polarized spin current induces a charge current in the x direction[57].
-
[1] Beaurepaire E, Merle J C, Daunois A, Bigot J 1996 Phys. Rev. Lett. 76 4250
Google Scholar
[2] Carva K, Battiato M, Oppeneer P M 2011 Nat. Phys. 7 665
Google Scholar
[3] Koopmans B, van Kampen M, Kohlhepp J T, de Jonge W J M 2000 Phys. Rev. Lett. 85 844
Google Scholar
[4] Zhang G P, Hübner W, Lefkidis G, Bai Y, George T F 2009 Nat. Phys. 5 499
Google Scholar
[5] Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465
Google Scholar
[6] Nishitani J, Kozuki K, Nagashima T, Hangyo M 2010 Appl. Phys. Lett. 96 221906
Google Scholar
[7] Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nat. Photonics 5 31
Google Scholar
[8] Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256
Google Scholar
[9] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483
Google Scholar
[10] Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031
Google Scholar
[11] Yang K H, Richards P L, Shen Y R 1971 Appl. Phys. Lett. 19 320
Google Scholar
[12] Mourou G, Stancampiano C V, Blumenthal D 1981 Appl. Phys. Lett. 38 470
Google Scholar
[13] Auston D H, Cheung K P, Valdmanis J A, Kleinman D A 1984 Phys. Rev. Lett. 53 1555
Google Scholar
[14] Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523
Google Scholar
[15] Fattinger Ch, Grischkowsky D 1988 Appl. Phys. Lett. 53 1480
Google Scholar
[16] Shalaby M, Hauri C P 2015 Nat. Commun. 6 5976
Google Scholar
[17] Tomasino A, Parisi A, Stivala S, Livreri P, Cino A C, Busacca A C, Peccianti M, Morandotti R 2013 Sci. Rep. 3 1
Google Scholar
[18] Zhang X C, Ma X F, Jin Y, Lu T M, Boden E P, Phelps P D, Stewart K R, Yakymyshyn C P 1992 Appl. Phys. Lett. 61 3080
Google Scholar
[19] Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Kläui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402
Google Scholar
[20] Ignatyeva D O, Davies C S, Sylgacheva D A, Tsukamoto A, Yoshikawa H, Kapralov P O, Kirilyuk A, Belotelov V I, Kimel A V 2019 Nat. Commun. 10 4786
Google Scholar
[21] Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965
Google Scholar
[22] Wang B, Shan S, Wu X, Wang C, Pandey C, Nie T, Zhao W, Li Y, Miao J, Wang L 2019 Appl. Phys. Lett. 115 121104
Google Scholar
[23] Koopmans B, Malinowski G, Longa F D, Steiauf D, Fähnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259
Google Scholar
[24] Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855
Google Scholar
[25] Choi G M, Min B C, Lee K J, Cahill D G 2014 Nat. Commun. 5 4334
Google Scholar
[26] Bergeard N, Hehn M, Mangin S, Lengaigne G, Montaigne F, Lalieu M L M, Koopmans B, Malinowski G 2016 Phys. Rev. Lett. 117 147203
Google Scholar
[27] Xu Y, Deb M, Malinowski G, Hehn M, Zhao W, Mangin S 2017 Adv. Mater. 29 1703474
Google Scholar
[28] Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203
Google Scholar
[29] Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404
Google Scholar
[30] Nenno D M, Rethfeld B, Schneider H C 2018 Phys. Rev. B 98 224416
Google Scholar
[31] Choi G M, Moon C H, Min B C, Lee K J, Cahill D G 2015 Nat. Phys. 11 576
Google Scholar
[32] Seifert T S, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Münzenberg M, Goennenwein S T B, Woltersdorf G, Rethfeld B, Brouwer P W, Wolf M, Kläui M, Kampfrath T 2018 Nat. Commun. 9 2899
Google Scholar
[33] Beigang R, Papaioannou E T, Scheuer L, Keller S, Torosyan G, Rahm M, Sokoluk D, Talara M, Oda Y, Kitahara H, Afalla J, Mag-usara V K, Tani M 2019 Terahertz RF Millim. Submillimeter-Wave Technol. Appl. XⅡ San Francisco, California, United States, February 2–7, 2019 p109170O
[34] Herapath R I, Hornett S M, Seifert T S, Jakob G, Kläui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107
Google Scholar
[35] Papaioannou E Th, Torosyan G, Keller S, Scheuer L, Battiato M, Mag-Usara V K, L’huillier J, Tani M, Beigang R 2018 IEEE Trans. Magn. 54 1
Google Scholar
[36] Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J X, Sun H, Wang S, Song J C W, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347
Google Scholar
[37] Mangin S, Gottwald M, Lambert C H, Steil D, Uhlí? V, Pang L, Hehn M, Alebrand S, Cinchetti M, Malinowski G, Fainman Y, Aeschlimann M, Fullerton E E 2014 Nat. Mater. 13 286
Google Scholar
[38] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing Th 2007 Phys. Rev. Lett. 99 047601
Google Scholar
[39] Němec P, Rozkotová E, Tesařová N, Trojánek F, De Ranieri E, Olejník K, Zemen J, Novák V, Cukr M, Malý P, Jungwirth T 2012 Nat. Phys. 8 411
Google Scholar
[40] Ramsay A J, Roy P E, Haigh J A, Otxoa R M, Irvine A C, Janda T, Campion R P, Gallagher B L, Wunderlich J 2015 Phys. Rev. Lett. 114 067202
Google Scholar
[41] Freimuth F, Blügel S, Mokrousov Y 2016 Phys. Rev. B 94 144432
Google Scholar
[42] Choi G M, Schleife A, Cahill D G 2017 Nat. Commun. 8 15085
Google Scholar
[43] Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blügel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455
Google Scholar
[44] Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing Th, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415
Google Scholar
[45] Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207
Google Scholar
[46] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
Google Scholar
[47] Hoffmann A 2013 IEEE Trans. Magn. 49 5172
Google Scholar
[48] Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213
Google Scholar
[49] Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910
Google Scholar
[50] Wunderlich J, Kaestner B, Sinova J, Jungwirth T 2005 Phys. Rev. Lett. 94 047204
Google Scholar
[51] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555
Google Scholar
[52] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189
Google Scholar
[53] Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509
Google Scholar
[54] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778
Google Scholar
[55] Shen K, Vignale G, Raimondi R 2014 Phys. Rev. Lett. 112 096601
Google Scholar
[56] Deorani P, Son J, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2014 Phys. Rev. B 90 094403
Google Scholar
[57] Rojas-Sánchez J C, Oyarzún S, Fu Y, Marty A, Vergnaud C, Gambarelli S, Vila L, Jamet M, Ohtsubo Y, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Reyren N, George J M, Fert A 2016 Phys. Rev. Lett. 116 096602
Google Scholar
[58] Shiomi Y, Nomura K, Kajiwara Y, Eto K, Novak M, Segawa K, Ando Y, Saitoh E 2014 Phys. Rev. Lett. 113 196601
Google Scholar
[59] Sun R, Yang S, Yang X, Vetter E, Sun D, Li N, Su L, Li Y, Li Y, Gong Z, Xie Z, Hou K, Gul Q, He W, Zhang X, Cheng Z 2019 Nano Lett. 19 4420
Google Scholar
[60] Gambardella P, Miron I M 2011 Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369 3175
Google Scholar
[61] Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871
Google Scholar
[62] Rojas-Sánchez J C, Vila L, Desfonds G, Gambarelli S, Attané J P, de Teresa J M, Magén C, Fert A 2013 Nat. Commun. 4 2944
Google Scholar
[63] Huang L, Kim J W, Lee S H, Kim S D, Tien V M, Shinde K P, Shim J H, Shin Y, Shin H J, Kim S, Park J, Park S Y, Choi Y S, Kim H J, Hong J I, Kim D E, Kim D H 2019 Appl. Phys. Lett. 115 142404
Google Scholar
[64] Huisman T J, Mikhaylovskiy R V, Tsukamoto A, Rasing Th, Kimel A V 2015 Phys. Rev. B 92 104419
Google Scholar
[65] Huisman T J, Rasing T 2016 J. Phys. Soc. Jpn. 86 011009
Google Scholar
[66] Nenno D M, Binder R, Schneider H C 2019 Phys. Rev. Appl. 11 054083
Google Scholar
[67] Zhang S, Jin Z, Zhu Z, Zhu W, Zhang Z, Ma G, Yao J 2017 J. Phys. Appl. Phys. 51 034001
Google Scholar
[68] Chen M, Mishra R, Wu Y, Lee K, Yang H 2018 Adv. Opt. Mater. 6 1800430
Google Scholar
[69] Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Opt. Mater. 4 1944
Google Scholar
[70] Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247
Google Scholar
[71] Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311
Google Scholar
[72] Nenno D M, Scheuer L, Sokoluk D, Keller S, Torosyan G, Brodyanski A, Lösch J, Battiato M, Rahm M, Binder R H, Schneider H C, Beigang R, Papaioannou E T 2019 Sci. Rep. 9 1
Google Scholar
[73] Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401
Google Scholar
[74] Huisman T J, Ciccarelli C, Tsukamoto A, Mikhaylovskiy R V, Rasing Th, Kimel A V 2017 Appl. Phys. Lett. 110 072402
Google Scholar
[75] Seifert T, Martens U, Günther S, Schoen M A W, Radu F, Chen X Z, Lucas I, Ramos R, Aguirre M H, Algarabel P A, Anadón A, Körner H S, Walowski J, Back C, Ibarra M R, Morellón L, Saitoh E, Wolf M, Song C, Uchida K, Münzenberg M, Radu I, Kampfrath T 2017 SPIN 07 1740010
Google Scholar
[76] Schneider R, Fix M, Heming R, Michaelis de Vasconcellos S, Albrecht M, Bratschitsch R 2018 ACS Photonics 5 3936
Google Scholar
[77] Schneider R, Fix M, Bensmann J, Michaelis de Vasconcellos S, Albrecht M, Bratschitsch R 2019 Appl. Phys. Lett. 115 152401
Google Scholar
[78] Cramer J, Seifert T, Kronenberg A, Fuhrmann F, Jakob G, Jourdan M, Kampfrath T, Kläui M 2018 Nano Lett. 18 1064
Google Scholar
[79] Khang N H D, Ueda Y, Hai P N 2018 Nat. Mater. 17 808
Google Scholar
[80] Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356
Google Scholar
[81] McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P, Gedik N 2012 Nat. Nanotechnol. 7 96
Google Scholar
[82] Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Münzenberg M, Perfetti L, Kampfrath T 2016 Nat. Commun. 7 13259
Google Scholar
[83] Seifert P, Vaklinova K, Kern K, Burghard M, Holleitner A 2017 Nano Lett. 17 973
Google Scholar
[84] Fang Z, Wang H, Wu X, Shan S, Wang C, Zhao H, Xia C, Nie T, Miao J, Zhang C, Zhao W, Wang L 2019 Appl. Phys. Lett. 115 191102
Google Scholar
[85] Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801
Google Scholar
[86] Zhang Q, Hong D, Liu C, Schaller R, Fong D, Bhattacharya A, Wen H 2019 Conf. Lasers Electro-Opt. San Jose, California, May 5–10, 2019 pFM4D.7
[87] Husain S, Kumar A, Kumar P, Kumar A, Barwal V, Behera N, Choudhary S, Svedlindh P, Chaudhary S 2018 Phys. Rev. B 98 180404
Google Scholar
[88] Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514
Google Scholar
[89] Battiato M, Held K 2016 Phys. Rev. Lett. 116 196601
Google Scholar
[90] Hibberd M T, Lake D S, Johansson N A B, Thomson T, Jamison S P, Graham D M 2019 Appl. Phys. Lett. 114 031101
Google Scholar
[91] Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487
Google Scholar
[92] Chen X, Wu X, Shan S, Guo F, Kong D, Wang C, Nie T, Pandey C, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Appl. Phys. Lett. 115 221104
Google Scholar
[93] Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Express 11 092101
Google Scholar
[94] Chen M, Wu Y, Liu Y, Lee K, Qiu X, He P, Yu J, Yang H 2019 Adv. Opt. Mater. 7 1801608
Google Scholar
[95] Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Kläui M, Turchinovich D 2015 Nat. Phys. 11 761
Google Scholar
[96] Zhang S, Li Q, Dai Y, Lin X, Ma G, Jin Z, Zhu W, Zhang Z, Yao J 2018 2018 43rd Int. Conf. Infrared Millim. Terahertz Waves IRMMW-THz Nagoya, Japan, September 9–14, 2018 p1
[97] Mikhaylovskiy R V, Hendry E, Kruglyak V V, Pisarev R V, Rasing Th, Kimel A V 2014 Phys. Rev. B 90 184405
Google Scholar
[98] Mikhaylovskiy R V, Hendry E, Secchi A, Mentink J H, Eckstein M, Wu A, Pisarev R V, Kruglyak V V, Katsnelson M I, Rasing T, Kimel A V 2015 Nat. Commun. 6 8190
Google Scholar
计量
- 文章访问数: 13574
- PDF下载量: 738
- 被引次数: 0