Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Micromagnetics simulation on the microwave permeability of magnetic porous nano-flakes

Tu Kuan Han Man-Gui

Citation:

Micromagnetics simulation on the microwave permeability of magnetic porous nano-flakes

Tu Kuan, Han Man-Gui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Many modern electronic devices are operated on a frequency above 1 GHz. Frequencies of electromagnetic noises coming from these devices are usually larger than 10 GHz. High-frequency magnetic losses in the natural resonance mechanism can be used to dissipate the energy of electromagnetic noises. Ferromagnetic nanostructural materials (nano flakes or nanowires) in strong shape anisotropy fields are one of the promising anti electromagnetic interference (EMI) materials due to their large high-frequency magnetic losses. Application of EMI requires that the electromagnetic wave absorbing materials should be lightweight and have a wide absorbing bandwidth. However, most electromagnetic wave absorbing materials reported do not have these features. To meet these demands, the microwave magnetic properties of porous -Fe nano flakes (length width thickness: 300 nm 100 nm 10 nm) have been simulated based on micromagnetics theory. Compared to the nano flakes without nano pores, simulation results reveal that the demagnetization fields will be altered if a nano flake contains several pores. Effect of nano pores (diameter =15 nm) in different arrangements (rows columns: 210; 25; 22; 45) on the high-frequency magnetic properties is investigated in this paper. It is found that nano flakes can alter the configurations of magnetic domains. More domains in small sizes in an inhomogeneous localized magnetic anisotropic field have been achieved. Consequently, more high-frequency magnetic loss peaks can be found. Overlapping of magnetic loss peaks implies that it potentially enables to widen the bandwidth of electromagnetic absorption within 1030 GHz. Furthermore, simulations reveal that the quantity, magnitude and resonance frequencies of the loss peaks are strongly dependent on the quantity and the arrangement of nano pores. Besides, the existence of multi magnetic loss peaks has been studied for ellipsoid objects from the perspective of inhomogeneously localized effective magnetic fields. Results reveal that the frequently observed wide magnetic loss peaks in experimental data may be due to the inhomogeneously localized effective magnetic fields of an absorber containing a plentiful of randomly oriented particles. Clearly, compared to the nano flakes without pores, the nano flakes with pores can significantly reduce the volume density. Therefore, our simulation results show that porous nano flakes can be a good lightweight electromagnetic wave absorber candidate with wide absorbing bandwidths.
      Corresponding author: Han Man-Gui, magnet@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271039), and the Scientific Projects of Sichuan Province, China (Grant Nos. 2013JQ0006, 2015 HH0016).
    [1]

    Tang X, Hu K A 2007 Mater. Sci. Eng. B 139 119

    [2]

    Han M G, Guo W, Wu Y H, Liu M, Hadimani M L 2014 Chin. Phys. B 23 083301

    [3]

    Zhong S L, Han M G, Deng L J 2011 Acta. Phys. Sin. 60 017501 (in Chinese) [钟顺林, 韩满贵, 邓龙江 2011 60 017501]

    [4]

    Kim S T, Kim S S 2012 IEEE Trans. Magn. 48 3494

    [5]

    Lee K S, Yun Y C, Kim S W, Kim S S 2008 J. Appl. Phys.103 07E504

    [6]

    Snoek J L 1948 Physica 14 207

    [7]

    Legarda F, Idoeta R 2001 Radiat. Phys. Chem. 61 549

    [8]

    Oskooi A, Johnson S G 2011 J. Comput. Phys. 230 2369

    [9]

    Liu X G, Geng D Y, Meng H, Shang P L, Zhang Z D 2008 Appl. Phys. Lett. 92 173117

    [10]

    Han M G, Liang D F, Deng L J 2011 Appl. Phys. Lett. 99 082503

    [11]

    Han M G, Liang D F, Rozanov K N, Deng L J 2013 IEEE Trans. Magn. 49 982

    [12]

    Liu Q L, Zhang D, Fan T X 2008 Appl. Phys. Lett. 93 013110

    [13]

    Chen W B, Han M G, Deng L J 2011 Acta. Phys. Sin. 60 017507 (in Chinese) [陈文兵, 韩满贵, 邓龙江 2011 60 017507]

    [14]

    Han M G, Guo W, Deng L J 2014 Sci. China Tech. Sci. 57 254

    [15]

    Yang W F, Qiao L, Wei J Q, Zhang Z Q, Wang T, Li F S 2010 J. Appl. Phys. 107 033913

    [16]

    Wu Y H, Han M G, Tang Z K, Deng L J 2014 J. Appl. Phys. 115 163902

    [17]

    Deng L J, Zhou P H, Lu H P, Weng X L, Liang D F, Xie J L 2013 Mater. China 32 449 (in Chinese) [邓龙江, 周佩珩, 陆海鹏, 翁小龙, 梁迪飞, 谢建良 2013 中国材料进展 32 449]

    [18]

    Xiao J J, Sun C, Xue D S, Li F S 2001 Acta. Phys. Sin. 50 1605 (in Chinese) [肖君军, 孙超, 薛德胜, 李发伸 2001 50 1605]

    [19]

    Aharoni A 1996 Introduction to Ferromagnetism (New York: Oxford University Press) p31

    [20]

    Liao S B 1998 Ferromagnetism (Beijing: Science Press) pp6-139 (in Chinese) [廖绍彬 1998 铁磁学 (北京: 科学出版社)第 6–139 页]

    [21]

    Shao Q, Ku P S, Ruotolo A 2014 IEEE Trans. Magn. 50 1

    [22]

    Wan D F, Ma X L 1994 Physics of Magnetism (Chengdu: Publishing House of University of Electronic Science and Technology) p214 (in Chinese) [宛德福, 马兴隆 1994 磁性物理学(成都: 电子科技大学出版社)第214页]

  • [1]

    Tang X, Hu K A 2007 Mater. Sci. Eng. B 139 119

    [2]

    Han M G, Guo W, Wu Y H, Liu M, Hadimani M L 2014 Chin. Phys. B 23 083301

    [3]

    Zhong S L, Han M G, Deng L J 2011 Acta. Phys. Sin. 60 017501 (in Chinese) [钟顺林, 韩满贵, 邓龙江 2011 60 017501]

    [4]

    Kim S T, Kim S S 2012 IEEE Trans. Magn. 48 3494

    [5]

    Lee K S, Yun Y C, Kim S W, Kim S S 2008 J. Appl. Phys.103 07E504

    [6]

    Snoek J L 1948 Physica 14 207

    [7]

    Legarda F, Idoeta R 2001 Radiat. Phys. Chem. 61 549

    [8]

    Oskooi A, Johnson S G 2011 J. Comput. Phys. 230 2369

    [9]

    Liu X G, Geng D Y, Meng H, Shang P L, Zhang Z D 2008 Appl. Phys. Lett. 92 173117

    [10]

    Han M G, Liang D F, Deng L J 2011 Appl. Phys. Lett. 99 082503

    [11]

    Han M G, Liang D F, Rozanov K N, Deng L J 2013 IEEE Trans. Magn. 49 982

    [12]

    Liu Q L, Zhang D, Fan T X 2008 Appl. Phys. Lett. 93 013110

    [13]

    Chen W B, Han M G, Deng L J 2011 Acta. Phys. Sin. 60 017507 (in Chinese) [陈文兵, 韩满贵, 邓龙江 2011 60 017507]

    [14]

    Han M G, Guo W, Deng L J 2014 Sci. China Tech. Sci. 57 254

    [15]

    Yang W F, Qiao L, Wei J Q, Zhang Z Q, Wang T, Li F S 2010 J. Appl. Phys. 107 033913

    [16]

    Wu Y H, Han M G, Tang Z K, Deng L J 2014 J. Appl. Phys. 115 163902

    [17]

    Deng L J, Zhou P H, Lu H P, Weng X L, Liang D F, Xie J L 2013 Mater. China 32 449 (in Chinese) [邓龙江, 周佩珩, 陆海鹏, 翁小龙, 梁迪飞, 谢建良 2013 中国材料进展 32 449]

    [18]

    Xiao J J, Sun C, Xue D S, Li F S 2001 Acta. Phys. Sin. 50 1605 (in Chinese) [肖君军, 孙超, 薛德胜, 李发伸 2001 50 1605]

    [19]

    Aharoni A 1996 Introduction to Ferromagnetism (New York: Oxford University Press) p31

    [20]

    Liao S B 1998 Ferromagnetism (Beijing: Science Press) pp6-139 (in Chinese) [廖绍彬 1998 铁磁学 (北京: 科学出版社)第 6–139 页]

    [21]

    Shao Q, Ku P S, Ruotolo A 2014 IEEE Trans. Magn. 50 1

    [22]

    Wan D F, Ma X L 1994 Physics of Magnetism (Chengdu: Publishing House of University of Electronic Science and Technology) p214 (in Chinese) [宛德福, 马兴隆 1994 磁性物理学(成都: 电子科技大学出版社)第214页]

  • [1] Wang Ning, Huang Feng, Chen Ying, Zhu Guo-Feng, Su Hao-Bin, Guo Cui-Xia, Wang Xiang-Feng. Magnetic-field-induced spin reorientation in TmFeO3 single crystals. Acta Physica Sinica, 2024, 73(1): 017801. doi: 10.7498/aps.73.20231322
    [2] Liu Xiang, Wang Xi-Guang, Li Zhi-Xiong, Guo Guang-Hua. Left-handed polarized spin waves induced by spin polarized electric currents in ferromagnetic domain walls. Acta Physica Sinica, 2024, 73(14): 147501. doi: 10.7498/aps.73.20240651
    [3] Chen Ya-Bo, Yang Xiao-Kuo, Wei Bo, Wu Tong, Liu Jia-Hao, Zhang Ming-Liang, Cui Huan-Qing, Dong Dan-Na, Cai Li. Ferromagnetic resonance frequency and spin wave mode of asymmetric strip nanomagnet. Acta Physica Sinica, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [4] Han Fang-Bin, Zhang Wen-Xu, Peng Bin, Zhang Wan-Li. Angle dependent inverse spin Hall effect in NiFe/Pt thin film. Acta Physica Sinica, 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [5] Wang Ri-Xing, Xiao Yun-Chang, Zhao Jing-Li. Ferromagnetic resonance in spin valve structures with perpendicular anisotropy. Acta Physica Sinica, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [6] Li Zheng-Hua, Li Xiang. Micromagnetic modeling of L10-ordered FePtmagnetic thin films. Acta Physica Sinica, 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [7] Zhang Xi-Chao, Zhao Guo-Ping, Xia Jing. Micromagnetic analysis of the maghemite platelet chains in the iron-mineral-based magnetoreceptor of birds. Acta Physica Sinica, 2013, 62(21): 218702. doi: 10.7498/aps.62.218702
    [8] Xue Hui, Ma Zong-Min, Shi Yun-Bo, Tang Jun, Xue Chen-Yang, Liu Jun, Li Yan-Jun. Magnetic exchange force microscopy using ferromagnetic resonance. Acta Physica Sinica, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [9] Gu Wen-Juan, Pan Jing, Hu Jing-Guo. Ferromagnetic resonance phenomenon of magnetic thin film under a perpendicular field. Acta Physica Sinica, 2012, 61(16): 167501. doi: 10.7498/aps.61.167501
    [10] Gu Wen-Juan, Pan Jing, Du Wei, Hu Jing-Guo. Measurement of magnetic anisotropyby ferromagnetic resonance. Acta Physica Sinica, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [11] Pan Jing, Zhou Lan, Tao Yong-Chun, Hu Jing-Guo. Spin waves in ferromagnetic/antiferrmagnetic bilayers under the stress field. Acta Physica Sinica, 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [12] Rong Jian-Hong, Yun Guo-Hong. Ferromagnetic resonance in ferromagnetic bilayer films under the stress anisotropy. Acta Physica Sinica, 2007, 56(9): 5483-5488. doi: 10.7498/aps.56.5483
    [13] Pan Jing, Ma Mei, Zhou Lan, Hu Jing-Guo. Ferromagnetic resonance in ferromagnetic/antiferromagnetic bilayers under the stress field. Acta Physica Sinica, 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [14] Yuan Shu-Juan, Zhou Shi-Ming, Lu Mu. Ferromagnetic resonance study of Ni nanowire arrays. Acta Physica Sinica, 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [15] Jiang Jian-Jun, Yuan Lin, Deng Lian-Wen, He Hua-Hui. Micromagnetics study of the magnetic nano-granular films. Acta Physica Sinica, 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [16] Chen Ren-Jie, Rong Chuan-Bing, Zhang Hong-Wei, He Shu-Li, Zhang Shao-Ying, Shen Bao-Gen. Micromagnetic analysis of the magnetization reversal processes in Sm(Co,Cu,Fe,Zr)z magnets*. Acta Physica Sinica, 2004, 53(12): 4341-4346. doi: 10.7498/aps.53.4341
    [17] Du Jun, Sun Liang, Sheng Wen-Ting, You Biao, Lu Mu, Hu An, M. M. Corte-Real, J. Q. Xiao. In-plane ferromagnetic resonance in nano-composite Fe-R-O(R=Hf Nd Dy)films. Acta Physica Sinica, 2004, 53(7): 2352-2356. doi: 10.7498/aps.53.2352
    [18] Weng Zhen-Zhen, Feng Qian, Huang Zhi-Gao, Du You-Wei. Study on the coercivity and step effect of mixed magnetic films by micromagnetism and Monte Carlo simulation. Acta Physica Sinica, 2004, 53(9): 3177-3185. doi: 10.7498/aps.53.3177
    [19] Hou Bi-Hui, Liu Feng-Yan, Guo Hui-Qun. Study on the magnetic anisotropy of the (Fe1-xCox)84Zr3.5Nb 3.5B8Cu1 nano-crystallite ribbon with the metho d of magnetic resonance. Acta Physica Sinica, 2003, 52(10): 2622-2626. doi: 10.7498/aps.52.2622
    [20] XIAO JUN-JUN, SUN CHAO, XUE DE-SHENG, LI FA-SHEN. STUDY ON MAGNETIC PROPERTIES OF Fe-NANOWIRES BY MICROMAGNETIC SIMULATION. Acta Physica Sinica, 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
Metrics
  • Abstract views:  6031
  • PDF Downloads:  188
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2015
  • Accepted Date:  19 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map