搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁磁畴壁中自旋极化电流诱导的左旋极化自旋波

刘想 王希光 李志雄 郭光华

引用本文:
Citation:

铁磁畴壁中自旋极化电流诱导的左旋极化自旋波

刘想, 王希光, 李志雄, 郭光华

Left-handed polarized spin waves induced by spin polarized electric currents in ferromagnetic domain walls

Liu Xiang, Wang Xi-Guang, Li Zhi-Xiong, Guo Guang-Hua
PDF
HTML
导出引用
  • 极化指的是波偏振的方式, 是波的一个基本性质. 利用波的极化可以进行信息的编码, 这一编码方式在光学和声学中得到广泛应用. 利用自旋波进行信息的传递和处理是磁子学的主要研究课题. 然而在铁磁材料中, 由于只存在右旋极化的自旋波, 利用波的极化进行信息的编码在铁磁自旋波器件中始终没有实现. 前期研究发现, 通过自旋极化电流可以在铁磁体中产生左旋极化自旋波, 从而有望实现利用极化编码的自旋波器件. 然而在一个均匀磁化铁磁体中产生左旋极化自旋波所需的电流密度过大, 实验上难以实现. 磁畴壁可作为自旋波波导, 且畴壁中自旋波的截止频率趋近于零. 本文从朗道-栗弗席兹方程出发, 研究了在自旋极化电流存在的条件下磁畴壁中自旋波的色散关系和传播特性, 证明只需要很小的自旋极化电流就可在畴壁中产生稳定的左旋极化自旋波. 微磁学模拟证明了理论分析结果. 该项研究为研制基于极化编码信息的自旋波器件提供了一个实际可行的方案.
    Polarization refers to the orientation of the wave oscillation which is a fundamental property of wave. It has been used widely to encode information in photonics and phononics. In magnonics, spin wave also has been used for transmitting and processing information. However, exploiting the spin wave polarization to design devices has not been achieved yet in ferromagnets as only the right-handed polarized spin waves can be accommodated in ferromagnets. Our eariler study suggests that the left-handed polarized spin waves can be introduced into ferromagnets by appling a spin-polarized electric current, thus making it possible to design spin wave devices with polarization encoding. But the critical current needed to induce left-handed polarized spin wave in a uniformly magnetized ferromagnet is too high to be realized experimentally. Magnetic domain wall can serve as spin wave guide, and the cutoff frequency of spin wave in a domain wall approaches zero. In this work, the dispersion relationship and propagation characteristics of spin wave in a Bloch domain wall are studied based on the Landau-Lifshitz equation in the presence of a spin-polarized electrical current. It is found that the stable left-handed spin wave can be generated in the domain wall with only a small current density. Micromagnetic simulations confirm the theoretical analysis results. In addition, due to the different excitation efficiencies and spin transfer torque induced propagating nonreciprocity of left- and right-handed polarized spin wave, it is possible to excite selectively the left- and right-handed polarized spin wave, as well as nearly linearly polarized spin waves. This study provides a practical and feasible solution for designing spin wave devices based on the polarization coding technique.
      通信作者: 郭光华, guogh@mail.csu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12274469, 12074437)资助的课题.
      Corresponding author: Guo Guang-Hua, guogh@mail.csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274469, 12074437).
    [1]

    Bloch, Zur F 1930 Z. Phys. 61 206Google Scholar

    [2]

    Kostylev M P, Serga A A, Schneider T, Leven B, Hillebrands B 2005 Appl. Phys. Lett. 871 53501Google Scholar

    [3]

    Khitun A, Wang K L 2005 Superlatt. Microstruct. 38 184Google Scholar

    [4]

    Chumak A V, Serga A A, Hillebrands B 2014 Nat. Commun. 5 4700Google Scholar

    [5]

    Khitun A, Bao M, Wang K L 2010 J. Phys. D 43 264005Google Scholar

    [6]

    Khitun A, Wang K L 2011 J. Appl. Phys. 110 034306Google Scholar

    [7]

    Klingler S, Pirro P, Brächer T, Leven B, Hillebrands B, Chumak A V 2014 Appl. Phys. Lett. 105 152410Google Scholar

    [8]

    Au Y, Ahmad E, Dmytriiev O, Dvornik M, Davison T, Kruglyak V V 2012 Appl. Phys. Lett. 100 182404Google Scholar

    [9]

    Demidov V E, Kostylev M P, Rott K, Münchenberger J, Reiss G, Demokritov S O 2011 Appl. Phys. Lett. 99 082507Google Scholar

    [10]

    Yan J, Ren Z W, Zhong Z Y 2021 Acta Phys. Sin. 70 187501 [闫健, 任志伟, 钟智勇 2021 70 187501]Google Scholar

    Yan J, Ren Z W, Zhong Z Y 2021 Acta Phys. Sin. 70 187501Google Scholar

    [11]

    Shen R C, Zhang G Q, Wang Y P, You J Q 2019 Acta Phys. Sin. 68 230305 [沈瑞昌, 张国强, 王逸璞, 游建强 2019 68 230305]Google Scholar

    Shen R C, Zhang G Q, Wang Y P, You J Q 2019 Acta Phys. Sin. 68 230305Google Scholar

    [12]

    Owens J M, Collins J H, Carter R L 1985 Circuits Syst. Signal Process 4 317Google Scholar

    [13]

    Adam J D 1988 Proc. IEEE 76 159Google Scholar

    [14]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [15]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [16]

    Demokritov S O, Serga A A, Andre A, Demidov V E, Kostylev M P, Hillebrands B, Slavin A N 2004 Phys. Rev. Lett. 93 047201Google Scholar

    [17]

    Vlaminck V, Bailleul M 2008 Science 322 410Google Scholar

    [18]

    Seo S M, Lee K J, Yang H, Ono T 2009 Phys. Rev. Lett. 102 147202Google Scholar

    [19]

    Hamadeh A, Kelly O A, Hahn C, Meley H, Bernard R, Molpeceres A H, Naletov V V, Viret M, Anane A, Cros V, Demokritov S O, Prieto J L, Muñoz M, De L G, Klein O 2014 Phys. Rev. Lett. 113 197203Google Scholar

    [20]

    Rousseau O, Rana B, Anami R, Yamada M, Miura K, Ogawa S, Otani Y 2015 Sci. Rep. 5 9873Google Scholar

    [21]

    Bennett C H, DiVincenzo D P 2000 Nature 404 247Google Scholar

    [22]

    Sophia R S, Jeffrey C G 2014 New J. Phys. 16 053029Google Scholar

    [23]

    Sklan S R 2015 AIP Adv. 5 053302Google Scholar

    [24]

    Kim S K, Hill D, Tserkovnyak Y 2016 Phys. Rev. Lett. 117 237201Google Scholar

    [25]

    Cheng R, Daniels M W, Zhu J G, Xiao D 2016 Sci. Rep. 6 24223Google Scholar

    [26]

    Lan J, Yu W, Xiao J 2017 Nat. Commun. 8 178Google Scholar

    [27]

    Zhou Z W, Wang X G, Nie Y Z, Xia Q L, Zeng Z M, Guo G H 2019 Phys. Rev. B 99 014420Google Scholar

    [28]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204Google Scholar

    [29]

    Garcia-Sanchez F, Borys P, Soucaille R, Adam J, Stamps R L, Kim J 2015 Phys. Rev. Lett. 114 247206Google Scholar

    [30]

    Lan J, Yu W C, Wu R Q, Xiao J 2015 Phys. Rev. X 5 041049

    [31]

    Wagner K, Kákay A, Schultheiss K, Henschke A, Sebastian T, Schultheiss H 2016 Nat. Nanotech. 11 432Google Scholar

    [32]

    Zhao M, Wang X G, Luo Z Y, Xia Q L, Nie Y Z, Xiong R, Guo G H 2022 Phys. Rev. Appl. 17 064013Google Scholar

    [33]

    Mougin A, Cormier M, Adam J P, Metaxas P J, Ferré J 2007 Europhys. Lett. 78 57007Google Scholar

    [34]

    Schryer N L, Walker L R 1974 J. Appl. Phys. 45 5406Google Scholar

    [35]

    Winter J M 1961 Phys. Rev. 124 452Google Scholar

    [36]

    Ravelosona D, Cebollada A, Briones F, Diaz-Paniagua C, Hidalgo M A, Batallan F 1999 Phys. Rev. B 59 4322Google Scholar

    [37]

    Yu T, Wang C, Sentef M A, Bauer G E W 2021 Phys. Rev. Lett. 126 137202Google Scholar

    [38]

    He J X, Zhang S F 2008 Phys. Rev. B 78 012414Google Scholar

    [39]

    Dolocan V O 2012 Appl. Phys. Lett. 101 072409Google Scholar

    [40]

    Nakatani Y, Shibata J, Tatara G, Kohno H, Thiaville A, Miltat J 2008 Phys. Rev. B 77 014439Google Scholar

    [41]

    Tserkovnyak Y, Skadsem H J, Brataas A, Bauer G E W 2006 Phys. Rev. B 74 144405Google Scholar

    [42]

    Vansteenkiste A, Leliaert J, Dvornik M, Garcia-sanchez F, Waeyenberge B V 2014 AIP Adv. 4 107133Google Scholar

    [43]

    Yan Z M , Li Z X, Wang X G, Luo Z Y, Xia Q L, Nie Y Z, Guo G H 2023 Phys. Rev. B 108 134432Google Scholar

  • 图 1  垂直磁各向异性铁磁纳米带中布洛赫畴壁的示意图, 绿色部分表示激发场施加的区域

    Fig. 1.  Schematic diagram of Bloch magnetic domain wall in a ferromagnetic thin film with perpendicular magnetic anisotropy, the green shaded area represents the place where the excitation field is applied.

    图 2  畴壁中自旋波的色散关系曲线 (a) bj = 0; (b)bj = 404 m/s; 蓝色实线和绿色(红色)虚线分别表示微磁学模拟结果和理论公式计算结果, 其中绿色虚线和红色虚线分别对应右旋和左旋自旋波的色散关系

    Fig. 2.  Dispersion relations of spin waves in domain wall for (a) bj = 0 and (b) bj = 404 m/s. The blue solid lines and green (red) dashed lines represent the results of micromagnetic simulations and theoretical calculations, respectively. The green and the red dashed lines correspond to the dispersion relations of right-handed and left-handed spin waves, respectively.

    图 3  自旋波波形图和空间傅里叶变换 (a) 线偏振场激发, bj = 404 m/s, f = 2 GHz; (b) 线偏振场激发, bj = 404 m/s, f = 0.5 GHz; (c) 左旋圆偏振场激发, bj = 404 m/s, f = 0.5 GHz; (d)—(f) 与(a)—(c)自旋波波形图对应的空间傅里叶变换, 图中红色箭头为磁化矢量的进动方向

    Fig. 3.  Spin waveforms and spatial Fourier transformation: (a) Spin waves excited by a linear polarization harmonic field with f = 2 GHz, bj = 404 m/s; (b) spin waves excited by a linear polarization harmonic field with f = 0.5 GHz, bj = 404 m/s; (c) spin wavese excited by a left circular polarization field with f = 0.5 GHz, bj = 404 m/s; (d)–(f) the spatial Fourier transformations corresponding to (a)–(c), respectively, the red arrows in the figure represent the precession direction of the magnetization vector.

    Baidu
  • [1]

    Bloch, Zur F 1930 Z. Phys. 61 206Google Scholar

    [2]

    Kostylev M P, Serga A A, Schneider T, Leven B, Hillebrands B 2005 Appl. Phys. Lett. 871 53501Google Scholar

    [3]

    Khitun A, Wang K L 2005 Superlatt. Microstruct. 38 184Google Scholar

    [4]

    Chumak A V, Serga A A, Hillebrands B 2014 Nat. Commun. 5 4700Google Scholar

    [5]

    Khitun A, Bao M, Wang K L 2010 J. Phys. D 43 264005Google Scholar

    [6]

    Khitun A, Wang K L 2011 J. Appl. Phys. 110 034306Google Scholar

    [7]

    Klingler S, Pirro P, Brächer T, Leven B, Hillebrands B, Chumak A V 2014 Appl. Phys. Lett. 105 152410Google Scholar

    [8]

    Au Y, Ahmad E, Dmytriiev O, Dvornik M, Davison T, Kruglyak V V 2012 Appl. Phys. Lett. 100 182404Google Scholar

    [9]

    Demidov V E, Kostylev M P, Rott K, Münchenberger J, Reiss G, Demokritov S O 2011 Appl. Phys. Lett. 99 082507Google Scholar

    [10]

    Yan J, Ren Z W, Zhong Z Y 2021 Acta Phys. Sin. 70 187501 [闫健, 任志伟, 钟智勇 2021 70 187501]Google Scholar

    Yan J, Ren Z W, Zhong Z Y 2021 Acta Phys. Sin. 70 187501Google Scholar

    [11]

    Shen R C, Zhang G Q, Wang Y P, You J Q 2019 Acta Phys. Sin. 68 230305 [沈瑞昌, 张国强, 王逸璞, 游建强 2019 68 230305]Google Scholar

    Shen R C, Zhang G Q, Wang Y P, You J Q 2019 Acta Phys. Sin. 68 230305Google Scholar

    [12]

    Owens J M, Collins J H, Carter R L 1985 Circuits Syst. Signal Process 4 317Google Scholar

    [13]

    Adam J D 1988 Proc. IEEE 76 159Google Scholar

    [14]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [15]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [16]

    Demokritov S O, Serga A A, Andre A, Demidov V E, Kostylev M P, Hillebrands B, Slavin A N 2004 Phys. Rev. Lett. 93 047201Google Scholar

    [17]

    Vlaminck V, Bailleul M 2008 Science 322 410Google Scholar

    [18]

    Seo S M, Lee K J, Yang H, Ono T 2009 Phys. Rev. Lett. 102 147202Google Scholar

    [19]

    Hamadeh A, Kelly O A, Hahn C, Meley H, Bernard R, Molpeceres A H, Naletov V V, Viret M, Anane A, Cros V, Demokritov S O, Prieto J L, Muñoz M, De L G, Klein O 2014 Phys. Rev. Lett. 113 197203Google Scholar

    [20]

    Rousseau O, Rana B, Anami R, Yamada M, Miura K, Ogawa S, Otani Y 2015 Sci. Rep. 5 9873Google Scholar

    [21]

    Bennett C H, DiVincenzo D P 2000 Nature 404 247Google Scholar

    [22]

    Sophia R S, Jeffrey C G 2014 New J. Phys. 16 053029Google Scholar

    [23]

    Sklan S R 2015 AIP Adv. 5 053302Google Scholar

    [24]

    Kim S K, Hill D, Tserkovnyak Y 2016 Phys. Rev. Lett. 117 237201Google Scholar

    [25]

    Cheng R, Daniels M W, Zhu J G, Xiao D 2016 Sci. Rep. 6 24223Google Scholar

    [26]

    Lan J, Yu W, Xiao J 2017 Nat. Commun. 8 178Google Scholar

    [27]

    Zhou Z W, Wang X G, Nie Y Z, Xia Q L, Zeng Z M, Guo G H 2019 Phys. Rev. B 99 014420Google Scholar

    [28]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204Google Scholar

    [29]

    Garcia-Sanchez F, Borys P, Soucaille R, Adam J, Stamps R L, Kim J 2015 Phys. Rev. Lett. 114 247206Google Scholar

    [30]

    Lan J, Yu W C, Wu R Q, Xiao J 2015 Phys. Rev. X 5 041049

    [31]

    Wagner K, Kákay A, Schultheiss K, Henschke A, Sebastian T, Schultheiss H 2016 Nat. Nanotech. 11 432Google Scholar

    [32]

    Zhao M, Wang X G, Luo Z Y, Xia Q L, Nie Y Z, Xiong R, Guo G H 2022 Phys. Rev. Appl. 17 064013Google Scholar

    [33]

    Mougin A, Cormier M, Adam J P, Metaxas P J, Ferré J 2007 Europhys. Lett. 78 57007Google Scholar

    [34]

    Schryer N L, Walker L R 1974 J. Appl. Phys. 45 5406Google Scholar

    [35]

    Winter J M 1961 Phys. Rev. 124 452Google Scholar

    [36]

    Ravelosona D, Cebollada A, Briones F, Diaz-Paniagua C, Hidalgo M A, Batallan F 1999 Phys. Rev. B 59 4322Google Scholar

    [37]

    Yu T, Wang C, Sentef M A, Bauer G E W 2021 Phys. Rev. Lett. 126 137202Google Scholar

    [38]

    He J X, Zhang S F 2008 Phys. Rev. B 78 012414Google Scholar

    [39]

    Dolocan V O 2012 Appl. Phys. Lett. 101 072409Google Scholar

    [40]

    Nakatani Y, Shibata J, Tatara G, Kohno H, Thiaville A, Miltat J 2008 Phys. Rev. B 77 014439Google Scholar

    [41]

    Tserkovnyak Y, Skadsem H J, Brataas A, Bauer G E W 2006 Phys. Rev. B 74 144405Google Scholar

    [42]

    Vansteenkiste A, Leliaert J, Dvornik M, Garcia-sanchez F, Waeyenberge B V 2014 AIP Adv. 4 107133Google Scholar

    [43]

    Yan Z M , Li Z X, Wang X G, Luo Z Y, Xia Q L, Nie Y Z, Guo G H 2023 Phys. Rev. B 108 134432Google Scholar

  • [1] 黄铭贤, 胡文彬, 白飞明. 声表面波-自旋波耦合及磁声非互易性器件.  , 2024, 73(15): 158501. doi: 10.7498/aps.73.20240462
    [2] 李柱柏, 魏磊, 张震, 段东伟, 赵倩. 磁振子宏观效应以及热扰动场对反磁化的影响.  , 2022, 71(12): 127502. doi: 10.7498/aps.71.20220168
    [3] 闫健, 任志伟, 钟智勇. Y3Fe5O12-CoFeB自旋波定向耦合器中的自旋波.  , 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [4] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根. 稀土永磁体及复合磁体反磁化过程和矫顽力.  , 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [5] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控.  , 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [6] 吕刚, 张红, 侯志伟. 具有倾斜极化层的自旋阀结构中磁翻转以及磁振荡模式的微磁模拟.  , 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [7] 朱金荣, 范吕超, 苏垣昌, 胡经国. 温度、缺陷对磁畴壁动力学行为的影响.  , 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [8] 涂宽, 韩满贵. 磁性多孔纳米片微波磁导率的微磁学研究.  , 2015, 64(23): 237501. doi: 10.7498/aps.64.237501
    [9] 吕刚, 曹学成, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟, 张红. 椭圆纳米盘中磁涡旋结构的方位角自旋波模式.  , 2015, 64(21): 217501. doi: 10.7498/aps.64.217501
    [10] 李正华, 李翔. L10-FePt合金单层磁性薄膜的微磁学模拟.  , 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [11] 张溪超, 赵国平, 夏静. 鸟类铁矿物磁受体中磁赤铁矿片晶链的微磁学分析.  , 2013, 62(21): 218702. doi: 10.7498/aps.62.218702
    [12] 谷晓芳, 钱轩, 姬扬, 陈林, 赵建华. (Ga,Mn)As中电流诱导自旋极化的磁光Kerr测量.  , 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [13] 侯小娟, 云国宏, 白宇浩, 白那日苏, 周文平. 量子自旋波本征值及易轴型各向异性对其的影响.  , 2011, 60(5): 056805. doi: 10.7498/aps.60.056805
    [14] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究.  , 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [15] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波.  , 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [16] 江建军, 袁 林, 邓联文, 何华辉. 磁性纳米颗粒膜的微磁学模拟.  , 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [17] 翁臻臻, 冯 倩, 黄志高, 都有为. 混合磁性薄膜矫顽力及阶梯效应的微磁学及Monte Carlo研究.  , 2004, 53(9): 3177-3185. doi: 10.7498/aps.53.3177
    [18] 陈仁杰, 荣传兵, 张宏伟, 贺淑莉, 张绍英, 沈保根. Sm(Co,Cu,Fe,Zr)z反磁化过程的微磁学分析.  , 2004, 53(12): 4341-4346. doi: 10.7498/aps.53.4341
    [19] 肖君军, 孙超, 薛德胜, 李发伸. 铁纳米线磁行为的微磁学模拟与研究.  , 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
    [20] 陈善宝, 张志强. 磁性薄膜畴壁短波长自旋波模式激发.  , 1996, 45(12): 2068-2072. doi: 10.7498/aps.45.2068
计量
  • 文章访问数:  1627
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-09
  • 修回日期:  2024-05-26
  • 上网日期:  2024-05-30
  • 刊出日期:  2024-07-20

/

返回文章
返回
Baidu
map