搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直场下磁性薄膜中的铁磁共振现象

顾文娟 潘靖 胡经国

引用本文:
Citation:

垂直场下磁性薄膜中的铁磁共振现象

顾文娟, 潘靖, 胡经国

Ferromagnetic resonance phenomenon of magnetic thin film under a perpendicular field

Gu Wen-Juan, Pan Jing, Hu Jing-Guo
PDF
导出引用
  • 将铁磁共振频率看成外磁场的函数, 讨论了垂直场下磁性膜中的铁磁共振现象. 结果显示: 当外磁场平行于膜面, 并考虑磁膜具有垂直磁晶各向异性情形时, 其磁共振频率随外磁场的变化分为高频支和低频支两种情况, 具体的依赖关系取决于磁膜内磁晶的各向异性; 当外磁场垂直于膜面, 其磁共振频率随外磁场的关系仅存在一支, 一般地, 磁共振频率随外磁场的增加单调地非线性减小, 但当立方磁晶各向异性场Hk1 与单轴磁晶各向异性场Ha之比值介于2/3 Hk1/Ha <1时, 其磁共振频率随外磁场的增加单调增加, 这与相关的实验结果一致. 研究结果表明: 磁薄膜中有无垂直于膜面的磁各向异性可以通过其磁共振谱的测量进行辨析.
    Regarding ferromagnetic resonance frequency as a function of the perpendicular external magnetic field, the ferromagnetic resonance phenomenon is investigated. The results show that for the case where the external magnetic field is parallel to the its plane and the magnetic thin film has a perpendicular uniaxial magnetiocrystalline anisotropy, magnetic resonance frequency is divided into two categories, i.e., low frequency branch and high frequency branch, their specific relation depends on the magnetic anisotropy of the magnetic film; when external magnetic field is perpendicular to the systemic plane, the magnetic resonance frequency displays only a branch with the change of external magnetic field. In general, the magnetic resonance frequency decreases with the increase of the external magnetic field nonlinearly and monotonically. However, when the ratio between the cubic magnetocrystalline anisotropic field Hk1 and uniaxial magnetocrystalline anisotropic field Ha is about 2/3 Hk1/Ha < 1, the magnetic resonance frequency increases with the increase of external magnetic field, which is in good agreement with the experimental results. The results show that through magnetic resonance spectrum, the vertical magnetic anisotropy in magnetic thin film can be distinguished.
    • 基金项目: 国家自然科学基金(批准号:10974170)和国家自然科学青年基金(批准号: 11104239)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10974170) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11104239).
    [1]

    Johnson K E 2000 J. Appl. Phys. 87 5365

    [2]

    Iwasaki S, Takemura K 1975 IEEE Trans. Magn. 11 1173

    [3]

    Suzuki T, Zhang Z G, Singh A K 2005 IEEE Trans. Magn. 41 555

    [4]

    Nakagawa H, Nemoto H, Honda Y, Ichihara T, Tanahashi K, Hosoe Y 2002 J. Appl. Phys. 91 8016

    [5]

    Victora R H, Shen X 2005 IEEE Trans. Magn. 41 537

    [6]

    Suess D, Schrefl T, Dittrich R, Kirschner M, Dorfbauer F, Hrkae G, Fidler J 2005 J. Magn. Magn. Mater. 290 551

    [7]

    Dobin A Y, Richter H J 2006 Appl. Phys. Lett. 89 062512

    [8]

    Choi Y, Jiang J S, Pearson J E, Bader S D, Kavich J J, Freeland J W, Liu J P 2007 Appl. Phys. Lett. 91 072509

    [9]

    Goll D, Breitling A, Gu L, Aken P A, Sigle W 2008 J. Appl. Phys. 104 083903

    [10]

    Goll D, Breitling A 2009 Appl. Phys. Lett. 94 052502

    [11]

    Hu J F, Chen J S, Ding Y, Lim F B C, Phyoe W L, Liu B 2008 Appl. Phys. Lett. 93 072504

    [12]

    Xiong C M, Sun J R, Wang D J, Liu G J, Zhang H W, Shen B G 2005 Chin. Phys. 14 604

    [13]

    Layadi A 2000 J. Appl. Phys. 87 1429

    [14]

    Pan J, Ma M, Zhou L, Hu J G 2006 Acta Phys. Sin. 55 897 (in Chinese) [潘靖, 马梅, 周兰, 胡经国 2006 55 897]

    [15]

    Pan J, Tao Y C, Hu J G 2006 Acta Phys. Sin. 55 3032 (in Chinese) [潘靖, 陶永春, 胡经国 2006 55 3032]

    [16]

    Pan J, Zhou L, Tao Y C, Hu J G 2007 Acta Phys. Sin. 56 3521 (in Chinese) [潘靖, 周岚, 陶永春, 胡经国 2007 56 3521]

    [17]

    Pan J, Zhou L, Hu J G 2009 Acta Phys. Sin. 58 6487 (in Chinese) [潘靖, 周岚, 胡经国 2009 58 6487]

    [18]

    Gu W J, Pan J, Du W, Hu J G 2011 Acta Phys. Sin. 60 7601 (in Chinese) [顾文娟, 潘靖, 杜薇, 胡经国 2011 60 7601]

    [19]

    Hu J G, Jin G J, Stamps R L, Ma Y Q 2006 J. Magn. Magn. Mater. 301 238

    [20]

    Hu J G, Jin G J, Hu A, Ma Y Q 2004 Eur. Phys. J. B 40 265

    [21]

    Pan J, Tao Y C, Zhou L, Hu J G 2007 Jpn. J. Appl. Phys. 46 6613

    [22]

    Pan J, Hu J G 2006 Phys. Lett. A 358 236

    [23]

    Hu J G, Stamps R L 2006 Chin. Phys. 15 1595

    [24]

    Smit J, Beljers H G 1955 Philips Res. Rep. 10 113

    [25]

    Morrish A H 1980 The Physical Principles of Magnetism (New York: Krieger)

    [26]

    Yi M, Chen Z F, Chen D X, Sukegawa H, Inomata K, Lai T S, Zhou S M 2011 Chin. Phys. Lett. 28 067501

  • [1]

    Johnson K E 2000 J. Appl. Phys. 87 5365

    [2]

    Iwasaki S, Takemura K 1975 IEEE Trans. Magn. 11 1173

    [3]

    Suzuki T, Zhang Z G, Singh A K 2005 IEEE Trans. Magn. 41 555

    [4]

    Nakagawa H, Nemoto H, Honda Y, Ichihara T, Tanahashi K, Hosoe Y 2002 J. Appl. Phys. 91 8016

    [5]

    Victora R H, Shen X 2005 IEEE Trans. Magn. 41 537

    [6]

    Suess D, Schrefl T, Dittrich R, Kirschner M, Dorfbauer F, Hrkae G, Fidler J 2005 J. Magn. Magn. Mater. 290 551

    [7]

    Dobin A Y, Richter H J 2006 Appl. Phys. Lett. 89 062512

    [8]

    Choi Y, Jiang J S, Pearson J E, Bader S D, Kavich J J, Freeland J W, Liu J P 2007 Appl. Phys. Lett. 91 072509

    [9]

    Goll D, Breitling A, Gu L, Aken P A, Sigle W 2008 J. Appl. Phys. 104 083903

    [10]

    Goll D, Breitling A 2009 Appl. Phys. Lett. 94 052502

    [11]

    Hu J F, Chen J S, Ding Y, Lim F B C, Phyoe W L, Liu B 2008 Appl. Phys. Lett. 93 072504

    [12]

    Xiong C M, Sun J R, Wang D J, Liu G J, Zhang H W, Shen B G 2005 Chin. Phys. 14 604

    [13]

    Layadi A 2000 J. Appl. Phys. 87 1429

    [14]

    Pan J, Ma M, Zhou L, Hu J G 2006 Acta Phys. Sin. 55 897 (in Chinese) [潘靖, 马梅, 周兰, 胡经国 2006 55 897]

    [15]

    Pan J, Tao Y C, Hu J G 2006 Acta Phys. Sin. 55 3032 (in Chinese) [潘靖, 陶永春, 胡经国 2006 55 3032]

    [16]

    Pan J, Zhou L, Tao Y C, Hu J G 2007 Acta Phys. Sin. 56 3521 (in Chinese) [潘靖, 周岚, 陶永春, 胡经国 2007 56 3521]

    [17]

    Pan J, Zhou L, Hu J G 2009 Acta Phys. Sin. 58 6487 (in Chinese) [潘靖, 周岚, 胡经国 2009 58 6487]

    [18]

    Gu W J, Pan J, Du W, Hu J G 2011 Acta Phys. Sin. 60 7601 (in Chinese) [顾文娟, 潘靖, 杜薇, 胡经国 2011 60 7601]

    [19]

    Hu J G, Jin G J, Stamps R L, Ma Y Q 2006 J. Magn. Magn. Mater. 301 238

    [20]

    Hu J G, Jin G J, Hu A, Ma Y Q 2004 Eur. Phys. J. B 40 265

    [21]

    Pan J, Tao Y C, Zhou L, Hu J G 2007 Jpn. J. Appl. Phys. 46 6613

    [22]

    Pan J, Hu J G 2006 Phys. Lett. A 358 236

    [23]

    Hu J G, Stamps R L 2006 Chin. Phys. 15 1595

    [24]

    Smit J, Beljers H G 1955 Philips Res. Rep. 10 113

    [25]

    Morrish A H 1980 The Physical Principles of Magnetism (New York: Krieger)

    [26]

    Yi M, Chen Z F, Chen D X, Sukegawa H, Inomata K, Lai T S, Zhou S M 2011 Chin. Phys. Lett. 28 067501

  • [1] 王宁, 黄峰, 陈盈, 朱国锋, 苏浩斌, 郭翠霞, 王向峰. 磁场诱导的TmFeO3单晶自旋重取向.  , 2024, 73(1): 017801. doi: 10.7498/aps.73.20231322
    [2] 李再东, 南雪萌, 屈川, 刘伍明. 飞秒尺度下的惯性磁化强度动力学.  , 2023, 72(10): 107502. doi: 10.7498/aps.72.20230345
    [3] 陈亚博, 杨晓阔, 危波, 吴瞳, 刘嘉豪, 张明亮, 崔焕卿, 董丹娜, 蔡理. 非对称条形纳磁体的铁磁共振频率和自旋波模式.  , 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [4] 李金财, 詹清峰, 潘民杰, 刘鲁萍, 杨华礼, 谢亚丽, 谢淑红, 李润伟. 具有条纹磁畴结构的NiFe薄膜的制备与磁各向异性研究.  , 2016, 65(21): 217501. doi: 10.7498/aps.65.217501
    [5] 韩方彬, 张文旭, 彭斌, 张万里. NiFe/Pt薄膜中角度相关的逆自旋霍尔效应.  , 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [6] 涂宽, 韩满贵. 磁性多孔纳米片微波磁导率的微磁学研究.  , 2015, 64(23): 237501. doi: 10.7498/aps.64.237501
    [7] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振.  , 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [8] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜.  , 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [9] 李会东, 孙卫国, 樊群超, 冯灏. Cl2+离子R支跃迁光谱的理论研究.  , 2012, 61(9): 093301. doi: 10.7498/aps.61.093301
    [10] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性.  , 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [11] 潘 靖, 周 岚, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的自旋波.  , 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [12] 荣建红, 云国宏. 外应力场下双层铁磁薄膜中的铁磁共振性质.  , 2007, 56(9): 5483-5488. doi: 10.7498/aps.56.5483
    [13] 成泰民, 鲜于泽. 有限温度下二维Heisenberg铁磁系统的横向声频支声子激发.  , 2006, 55(9): 4828-4836. doi: 10.7498/aps.55.4828
    [14] 成泰民, 鲜于泽, 冮铁臣. 光频支声子对二维Heisenberg铁磁系统磁激发的影响.  , 2006, 55(6): 2941-2948. doi: 10.7498/aps.55.2941
    [15] 潘 靖, 马 梅, 周 岚, 胡经国. 外应力场下铁磁/反铁磁双层膜系统的铁磁共振性质.  , 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [16] 袁淑娟, 周仕明, 鹿 牧. Ni纳米线阵列的铁磁共振研究.  , 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [17] 杜 军, 孙 亮, 盛雯婷, 游 彪, 鹿 牧, 胡 安, M. M. Corte-Real, J. Q. Xiao. 纳米复合Fe-R-O(R=Hf Nd Dy)薄膜面内铁磁共振研究.  , 2004, 53(7): 2352-2356. doi: 10.7498/aps.53.2352
    [18] 侯碧辉, 刘凤艳, 郭慧群. 磁共振法研究(Fe1-xCox)84Zr3.5Nb 3.5B8Cu1纳米晶薄带的磁各向异性.  , 2003, 52(10): 2622-2626. doi: 10.7498/aps.52.2622
    [19] 唐坤发, 胡嘉桢. 伊辛模型的四分支临界面及其临界行为.  , 1988, 37(3): 515-519. doi: 10.7498/aps.37.515
    [20] 李景德. 晶格振动声学支的边界耦合效应.  , 1987, 36(8): 1010-1018. doi: 10.7498/aps.36.1010
计量
  • 文章访问数:  8090
  • PDF下载量:  878
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-26
  • 修回日期:  2012-02-13
  • 刊出日期:  2012-08-05

/

返回文章
返回
Baidu
map