Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of Soret effect on thermal convection of a binary mixture in a shallow cylindrical pool with a free surface

Yu Jia-Jia Li You-Rong Chen Jie-Chao Wu Chun-Mei

Citation:

Influence of Soret effect on thermal convection of a binary mixture in a shallow cylindrical pool with a free surface

Yu Jia-Jia, Li You-Rong, Chen Jie-Chao, Wu Chun-Mei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, a series of experiments are conducted to understand the influence of Soret effect on thermal convection of binary mixture in a cylindrical pool with a free surface. The cylindrical pool is filled with the n-decane/n-hexane mixture with an n-decane initial mass fraction of 50%. The cylindrical pool and the disk on the free surface are kept at constant temperatures of Th and Tc (Th Tc), respectively. Temperature fluctuation pattern on the free surface is obtained by the schlieren method. Various temperature oscillatory patterns on the free surface are observed when the thermal convection of the n-decane/n-hexane mixture destabilizes at different aspect ratios. Results show that the critical thermal capillary Reynolds number of the incipience of the three-dimensional oscillatory flow in the n-decane/n-hexane mixture is smaller than that in the n-hexane fluid, and the variation tendency with the aspect ratio in the n-decane/n-hexane mixture is the same as that in the n-hexane fluid. The solute-capillary force caused by Soret effect plays an important role of the thermal convection in the n-decane/n-hexane mixture. Because the solute-capillary force has the same direction as the thermocapillary force, the thermal convection in the n-decane/n-hexane mixture becomes more instable and the critical thermocapillary Reynolds number is smaller than that in the n-hexane fluid. In the n-decane/n-hexane mixture, when the aspect ratio increases from 0.0217 to 0.0392, the critical thermal capillary Reynolds number decreases from 7.2104 to 5.0104. With the increase of the aspect ratio, the effect of the buoyancy is enhanced, and the critical thermocapillary Reynolds number decreases. When the aspect ratio increases from 0.0392 to 0.0434, the cold plume which facilitates destabilizing the thermal convection cannot be obviously enhanced. There is little effect of the cold plume on the fluid near the bottom. Therefore, the critical thermal capillary Reynolds number increases from 5.0104 to 6.4104 in this range. In the deep pool, the critical thermal capillary Reynolds number is almost a constant value. When the aspect ratio is smaller than 0.0848, the three-dimensional oscillatory flow occurs and the hydrothermal waves are observed. After the three-dimensional oscillatory flow appears, two groups of the hydrothermal waves with opposite propagating directions coexist in the pool. With the increase of the thermal capillary Reynolds number, the honeycomb-like patterns appear on the free surface, which are similar to the Bnard cells. In addition, the non-dimensional fundamental oscillation frequency increases with the thermal capillary Reynolds number. When the aspect ratio is bigger than 0.0848, spoke pattern, rosebud-like pattern and thin-longitudinal stripes will appear sequentially with the increase of thermocapillary Reynolds number. Furthermore, the number of the rosebud-like patterns decreases, while the area on the free surface in the pool occupied by the rosebud-like pattern increases with the increase of the thermal capillary Reynolds number.
      Corresponding author: Li You-Rong, liyourong@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51176209).
    [1]

    Soret C 1979 Arch. Sci. Phys. Nat. 2 48

    [2]

    Pugin V A, Bagdasarov N 1988 Geochem. Int. 25 57

    [3]

    Carrigan C R, Cygan R T 1986 J. Geophys. Res. 91 11451

    [4]

    Platten J K 2006 J. Appl. Mech. 73 5

    [5]

    Rahman M A, Saghir M Z 2014 Int. J. Heat Mass Transf. 73 693

    [6]

    Ning L Z, Yuan Z, Shi F, Qi X 2007 Chin. J. Appl. Mech. 24 363 (in Chinese) [宁利中, 袁喆, 石峯, 齐昕 2007 应用力学学报 24 363]

    [7]

    Ning L Z, Qi X, Zhou Y, Yu L 2009 Acta Phys. Sin. 58 2528 (in Chinese) [宁利中, 齐昕, 周洋, 余荔 2009 58 2528]

    [8]

    Ning L Z, Wang N, Yuan Z, Li K J, Wang Z Y 2014 Acta Phys. Sin. 63 104401 (in Chinese) [宁利中, 王娜, 袁喆, 李开继, 王卓运 2014 63 104401]

    [9]

    Bergeon A, Henry D, Benhadid L H, Tuckerman L S 1998 J. Fluid Mech. 375 143

    [10]

    Jian Y J, E X Q, Zhang J, Meng J M 2004 Chin. Phys. 13 2013

    [11]

    Charrier-Mojtabi M C, Elhajjar B, Mojtabi A 2007 Phys. Fluids 19 124104

    [12]

    Mansour A, Amahmid A, Hasnaoui M, Bourich M 2006 Numer. Heat Tranf. A-Appl. 49 69

    [13]

    Mansour A, Amahmid A, Hasnaoui M 2008 Int. J. Heat Fluid Flow 29 306

    [14]

    Mansour A, Amahmid A, Hasnaoui M, Bourich M 2004 Int. Comm. Heat Mass Transf. 31 431

    [15]

    Alloui I, Benmoussa H, Vasseur P 2010 Int. J. Heat Fluid Flow 31 191

    [16]

    Zhu Z Q, Chen S L, Liu Q S, Tong S L 2011 Chin. J. Theoret. Appl. Mech. 43 674 (in Chinese) [朱志强, 陈淑玲, 刘秋生, 同少莉 2011 力学学报 43 674]

    [17]

    Duan L, Kang Q 2008 Chin. Phys. B 17 3149

    [18]

    Gong Z X, Li Y R, Peng L, Wu S Y, Shi W Y 2013 Acta Phys. Sin. 62 040201 (in Chinese) [龚振兴, 李友荣, 彭岚, 吴双应, 石万元 2013 62 040201]

    [19]

    Yu J J, Ruan D F, Li Y R, Chen J C 2015 Exp. Therm. Fluid Sci. 61 79

    [20]

    Yu J J, Li Y R, Chen J C 2014 J. Eng. Thermophys. 35 1176 (in Chinese) [于佳佳, 李友荣, 陈捷超 2014 工程热 35 1176]

    [21]

    Shi W Y, Li Y R, Zeng D L, Imaishi N 2007 J. Eng. Thermophys. 28 101 (in Chinese) [石万元, 李友荣, 曾丹苓, 今石宣之 2007 工程热 28 101]

    [22]

    Shi W Y, Wang Y 2013 J. Eng. Thermophys. 34 702 (in Chinese) [石万元, 王瑜 2013 工程热 34 702]

    [23]

    Blanco P, Polyakov P, Bou-Ali M M, Wiegand S 2008 J. Phys. Chem. B 112 8340

    [24]

    Teitel M, Schwabe D, Gelfgat A Y 2008 J. Cryst. Growth 310 1343

    [25]

    Peng L, Li Y R, Shi W Y, Imaishi N 2007 Int. J. Heat Mass Transf. 50 872

    [26]

    Shi W Y, Imaishi N 2006 J. Cryst. Growth 290 280

    [27]

    Bnard H 1901 J. Phys. Theor. Appl. 10 254

    [28]

    Sim B C, Zebib A, Schwabe D 2003 J. Fluid Mech. 491 259

    [29]

    Benz S, Schwabe D 2001 Exp. Fluids 31 409

    [30]

    Li Y R, Yuan X F, Hu Y P, Tang J W 2013 Exp. Thermal Fluid Sci. 44 544

    [31]

    Coleman H W, Steele W G 2009 Experimentation, Validation, and Uncertainty Analysis for Engineers (3rd Ed.) (New York: John Wiley Sons) pp128-150

  • [1]

    Soret C 1979 Arch. Sci. Phys. Nat. 2 48

    [2]

    Pugin V A, Bagdasarov N 1988 Geochem. Int. 25 57

    [3]

    Carrigan C R, Cygan R T 1986 J. Geophys. Res. 91 11451

    [4]

    Platten J K 2006 J. Appl. Mech. 73 5

    [5]

    Rahman M A, Saghir M Z 2014 Int. J. Heat Mass Transf. 73 693

    [6]

    Ning L Z, Yuan Z, Shi F, Qi X 2007 Chin. J. Appl. Mech. 24 363 (in Chinese) [宁利中, 袁喆, 石峯, 齐昕 2007 应用力学学报 24 363]

    [7]

    Ning L Z, Qi X, Zhou Y, Yu L 2009 Acta Phys. Sin. 58 2528 (in Chinese) [宁利中, 齐昕, 周洋, 余荔 2009 58 2528]

    [8]

    Ning L Z, Wang N, Yuan Z, Li K J, Wang Z Y 2014 Acta Phys. Sin. 63 104401 (in Chinese) [宁利中, 王娜, 袁喆, 李开继, 王卓运 2014 63 104401]

    [9]

    Bergeon A, Henry D, Benhadid L H, Tuckerman L S 1998 J. Fluid Mech. 375 143

    [10]

    Jian Y J, E X Q, Zhang J, Meng J M 2004 Chin. Phys. 13 2013

    [11]

    Charrier-Mojtabi M C, Elhajjar B, Mojtabi A 2007 Phys. Fluids 19 124104

    [12]

    Mansour A, Amahmid A, Hasnaoui M, Bourich M 2006 Numer. Heat Tranf. A-Appl. 49 69

    [13]

    Mansour A, Amahmid A, Hasnaoui M 2008 Int. J. Heat Fluid Flow 29 306

    [14]

    Mansour A, Amahmid A, Hasnaoui M, Bourich M 2004 Int. Comm. Heat Mass Transf. 31 431

    [15]

    Alloui I, Benmoussa H, Vasseur P 2010 Int. J. Heat Fluid Flow 31 191

    [16]

    Zhu Z Q, Chen S L, Liu Q S, Tong S L 2011 Chin. J. Theoret. Appl. Mech. 43 674 (in Chinese) [朱志强, 陈淑玲, 刘秋生, 同少莉 2011 力学学报 43 674]

    [17]

    Duan L, Kang Q 2008 Chin. Phys. B 17 3149

    [18]

    Gong Z X, Li Y R, Peng L, Wu S Y, Shi W Y 2013 Acta Phys. Sin. 62 040201 (in Chinese) [龚振兴, 李友荣, 彭岚, 吴双应, 石万元 2013 62 040201]

    [19]

    Yu J J, Ruan D F, Li Y R, Chen J C 2015 Exp. Therm. Fluid Sci. 61 79

    [20]

    Yu J J, Li Y R, Chen J C 2014 J. Eng. Thermophys. 35 1176 (in Chinese) [于佳佳, 李友荣, 陈捷超 2014 工程热 35 1176]

    [21]

    Shi W Y, Li Y R, Zeng D L, Imaishi N 2007 J. Eng. Thermophys. 28 101 (in Chinese) [石万元, 李友荣, 曾丹苓, 今石宣之 2007 工程热 28 101]

    [22]

    Shi W Y, Wang Y 2013 J. Eng. Thermophys. 34 702 (in Chinese) [石万元, 王瑜 2013 工程热 34 702]

    [23]

    Blanco P, Polyakov P, Bou-Ali M M, Wiegand S 2008 J. Phys. Chem. B 112 8340

    [24]

    Teitel M, Schwabe D, Gelfgat A Y 2008 J. Cryst. Growth 310 1343

    [25]

    Peng L, Li Y R, Shi W Y, Imaishi N 2007 Int. J. Heat Mass Transf. 50 872

    [26]

    Shi W Y, Imaishi N 2006 J. Cryst. Growth 290 280

    [27]

    Bnard H 1901 J. Phys. Theor. Appl. 10 254

    [28]

    Sim B C, Zebib A, Schwabe D 2003 J. Fluid Mech. 491 259

    [29]

    Benz S, Schwabe D 2001 Exp. Fluids 31 409

    [30]

    Li Y R, Yuan X F, Hu Y P, Tang J W 2013 Exp. Thermal Fluid Sci. 44 544

    [31]

    Coleman H W, Steele W G 2009 Experimentation, Validation, and Uncertainty Analysis for Engineers (3rd Ed.) (New York: John Wiley Sons) pp128-150

  • [1] He Xiao-Qiu, Xiong Yong-Liang, Peng Ze-Rui, Xu Shun. Boundary layers and energy dissipation rates on a half soap bubble heated at the equator. Acta Physica Sinica, 2022, 71(20): 204701. doi: 10.7498/aps.71.20220693
    [2] He Jian-Chao, Fang Ming-Wei, Bao Yun. Scaling of Reynolds number based on maximum velocity and characteristic Reynolds number in two-dimensional thermal turbulence convection. Acta Physica Sinica, 2022, 71(19): 194702. doi: 10.7498/aps.71.20220352
    [3] Niu Yue, Bao Wei-Min, Li Xiao-Ping, Liu Yan-Ming, Liu Dong-Lin. Numerical simulation and experimental study of high-power thermal equilibrium inductively coupled plasma. Acta Physica Sinica, 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [4] Wang Xin-Bo, Bai He, Sun Qin-Fen, Yin Xin-She, Zhang Hong-Tai, Cui Wan-Zhao. Experimental study of multipactor on dielectric of penetration flange for vacuum chamber. Acta Physica Sinica, 2021, 70(12): 127901. doi: 10.7498/aps.70.20210106
    [5] Yin Hui, Zhao Bing-Xin. Effect of inclination on nonlinear evolution and bifurcation of thermal convection in a square cavity. Acta Physica Sinica, 2021, 70(11): 114401. doi: 10.7498/aps.70.20201513
    [6] Zheng Lai-Yun, Zhao Bing-Xin, Yang Jian-Qing. Bifurcation and nonlinear evolution of convection in binary fluid mixtures with weak Soret effect. Acta Physica Sinica, 2020, 69(7): 074701. doi: 10.7498/aps.69.20191836
    [7] Bao Yun, Gao Zhen-Yuan, Ye Meng-Xiang. Numerical study of Prandtl number effects in turbulent thermal convection. Acta Physica Sinica, 2018, 67(1): 014701. doi: 10.7498/aps.67.20171518
    [8] Li Xiao-Qing, Wang Tao, Ji Xiao-Ling. Experimental study on propagation properties of spherically aberrated beams through atmospheric turbulence. Acta Physica Sinica, 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [9] Bao Yun, Ning Hao, Xu Wei. Corner vortex characteristics at the reversal of large scale circulation in turbulent Rayleigh-Bnard convection. Acta Physica Sinica, 2014, 63(15): 154703. doi: 10.7498/aps.63.154703
    [10] Ning Li-Zhong, Wang Na, Yuan Zhe, Li Kai-Ji, Wang Zhuo-Yun. Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture. Acta Physica Sinica, 2014, 63(10): 104401. doi: 10.7498/aps.63.104401
    [11] Gong Zhen-Xing, Li You-Rong, Peng Lan, Wu Shuang-Ying, Shi Wan-Yuan. Asymptotic solution of thermal-solutal capillary convection in a slowly rotating shallow annular pool of two components solution. Acta Physica Sinica, 2013, 62(4): 040201. doi: 10.7498/aps.62.040201
    [12] Zhao Huan-Yu, He Cun-Fu, Wu Bin, Wang Yue-Sheng. Experimental investigation of two-dimensional multi-point defect phononic crystals with square lattice. Acta Physica Sinica, 2013, 62(13): 134301. doi: 10.7498/aps.62.134301
    [13] Mao Wei, Guo Zhao-Li, Wang Liang. Lattice Boltzmann simulation of the sedimentation of particles with thermal convection. Acta Physica Sinica, 2013, 62(8): 084703. doi: 10.7498/aps.62.084703
    [14] Liu Han-Tao, Chang Jian-Zhong, An Kang, Su Tie-Xiong. Direct numerical simulation of the sedimentation of two particles with thermal convection. Acta Physica Sinica, 2010, 59(3): 1877-1883. doi: 10.7498/aps.59.1877
    [15] Tong Zhi-Hui. Direct numerical simulation on the influence of solid-liquid density ratio on the particle sedimentation under thermal convection. Acta Physica Sinica, 2010, 59(3): 1884-1889. doi: 10.7498/aps.59.1884
    [16] Liu Han-Tao, Tong Zhi-Hui, An Kang, Ma Li-Qiang. Direct simulation of the influence on the motion of particles in a Newtonian fluid by melting and convection. Acta Physica Sinica, 2009, 58(9): 6369-6375. doi: 10.7498/aps.58.6369
    [17] Sun Liang, Sun Yi-Feng, Ma Dong-Jun, Sun De-Jun. Power law of horizontal convection at high Rayleigh numbers. Acta Physica Sinica, 2007, 56(11): 6503-6507. doi: 10.7498/aps.56.6503
    [18] Li Guo-Dong, Huang Yong-Nian. Traveling-wave convection with Eckhaus instability modulation in a binary fluid mixture. Acta Physica Sinica, 2007, 56(8): 4742-4748. doi: 10.7498/aps.56.4742
    [19] Zhao Ying, Ji Zhong-Zhen, Feng Tao. Simulation of thermal convection in a vertical slot using the lattice Boltzmann model. Acta Physica Sinica, 2004, 53(3): 671-675. doi: 10.7498/aps.53.671
    [20] Lin Shang-Jin. . Acta Physica Sinica, 2002, 51(9): 2057-2056. doi: 10.7498/aps.51.2057
Metrics
  • Abstract views:  5936
  • PDF Downloads:  161
  • Cited By: 0
Publishing process
  • Received Date:  07 March 2015
  • Accepted Date:  18 June 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map