Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of growth conditions on the microstructures and photoluminescence properties of Ga-doped ZnO films

Zhou Xiao-Hong Yang Qing Zou Jun-Tao Liang Shu-Hua

Citation:

Effects of growth conditions on the microstructures and photoluminescence properties of Ga-doped ZnO films

Zhou Xiao-Hong, Yang Qing, Zou Jun-Tao, Liang Shu-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • ZnO has a wide direct band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature, which is recognized as one of the promising semiconductors for optoelectronic device applications. However, ZnO generally displays visible defect-related deep-level emission and/or UV near-band-edge emission, which is strongly dependent on the growth method and condition. It has been reported that doping with IIIA elements can improve the optical properties of ZnO. Among them, Ga doping is considered not to induce large lattice distortion of ZnO due to the fact that the bonding lengths of Ga-O and Zn-O are similar and ionic radii of Ga3+ and Zn2+ are also similar. The gallium related compounds such as triethylgallium, gallium nitrate and gallium oxide are used as the Ga doping sources. It has been proved that ZnO film can be grown directly by the thermal oxidation of ZnS substrate. In this research, the Ga doping is adopted in the growth of ZnO film by applying the molten gallium to the surface of ZnS substrate and performing the subsequent thermal oxidation in the air at 650 and 700 °C for 3 and 8 h, respectively. The effects of growth condition on the microstructures and photoluminescence properties of the Ga-doped ZnO film are investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and photoluminescence at room temperature. In addition, the relationship among the oxidation temperature, oxidation time, Ga doping content and photoluminescence properties is discussed. The results show that the Ga-doped ZnO films grown under different growth conditions exhibit various amounts of Ga content and the gallium is present in the ZnO matrix as Ga3+ by partially substituting Zn2+. The Ga doping affects the microstructure and photoluminescence property by changing the defect type and level, stoichiometric ratio, and crystal quality of ZnO film. As the oxidation temperature increases, the amount of Ga doping content increases. In addition, the grain size of the Ga-doped ZnO film increases and becomes uniform, and the ratio of ultraviolet emission intensity to visible emission intensity increases. However, as the oxidation time increases, the amount of Ga doping content decreases, the grain size of the Ga-doped ZnO film becomes non-uniform, and the ratio of ultraviolet emission intensity to visible emission intensity decreases.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51202191), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2012JQ6002), and the Scientific Research Program Funded by Shaanxi Provincial Education Department of China (Grant No. 12JK0427).
    [1]

    Liang H K, Yu S F, Yang H Y 2010 Appl. Phys. Lett. 96 101116

    [2]

    Lupan O, Pauporte T, Viana B, Tiginyanu I M, Ursaki V V, Cortes R 2010 ACS Appl. Mater. Inter. 2 2083

    [3]

    Zhang L C, Zhao F Z, Wang F F, Li Q S 2013 Chin. Phys. B 22 128502

    [4]

    Heredia E, Bojorge C, Casanova J, Canepa H, Craievich A, Kellermann G 2014 Appl. Surf. Sci. 317 19

    [5]

    Gao L, Zhang Y, Zhang J M, Xu K W 2011 Appl. Surf. Sci. 257 2498

    [6]

    El-Desoky M M, Ali M A, Afifi G, Imam H 2014 J. Mater. Sci.-Mater. El. 25 5071

    [7]

    Shinde S S, Shinde P S, Oh Y W, Haranath D, Bhosale C H, Rajpure K Y 2012 Appl. Surf. Sci. 258 9969

    [8]

    Miyake A, Kominami H, Tatsuoka H, Kuwabara H, Nakanishi Y, Hatanaka Y 2000 Jpn. J. Appl. Phys. 39 L1186

    [9]

    Kaul A R, Gorbenko O Y, Botev A N, Burova L I 2005 Superlattice Microst. 38 272

    [10]

    Fan X M, Lian J S, Guo Z X, Lu H J 2005 J. Cryst. Growth 279 447

    [11]

    Vanheusden K, Seager C H, Warren W L, Tallant D R, Voigt J A 1996 Appl. Phys. Lett. 68 403

    [12]

    Liu M, Kitai A H, Mascher P 1992 J. Lumin. 54 35

    [13]

    Kohan A F, Ceder G, Morgan D, van de Walle C 2000 Phys. Rev. B 61 15019

    [14]

    Ding L H, Yang Y X, Jiang X W, Zhu C S, Chen G R 2008 J. Non-Cryst. Solids 354 1382

    [15]

    Shen Q H, Gao Z W, Ding H Y, Zhang G H, Pan N, Wang X P 2012 Acta Phys. Sin. 61 167105 (in Chinese) [沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平 2012 61 167105]

    [16]

    Yang Q, Saeki Y, Izumi S, Nukui T, Tackeuchi A, Ishida A, Tatsuoka H 2010 Appl. Surf. Sci. 256 6928

    [17]

    Sim K U, Shin S W, Moholkar A V, Yun J H, Moon J H, Kim J H 2010 Curr. Appl. Phys. 10 S463

    [18]

    Park G C, Hwang S M, Choi J H, Kwon Y H, Cho H K, Kim S W, Lim J H, Joo J 2013 Phys. Status Solidi A 210 1552

    [19]

    Qiao B, Tang Z L, Zhang Z T, Chen L 2006 Acta Phys. Chim. Sin. 10 1291

    [20]

    Zhong J, Muthukumar S, Chen Y, Lu Y, Ng H M, Jiang W, Garfunkel E L 2003 Appl. Phys. Lett. 83 3401

    [21]

    Yang Q, Zhou X H, Nukui T, Saeki Y, Izumi S, Tackeuchi A, Tatsuoka H, Liang S H 2014 AIP Adv. 4 027101

    [22]

    Lee S Y, Song Y W, Jeon K A 2008 J. Cryst. Growth. 310 4477

    [23]

    Hou Q Y, Dong H Y, Ma W, Zhao C W 2013 Acta Phys. Sin. 62 157101 (in Chinese) [侯清玉, 董红英, 马文, 赵春旺 2013 62 157101]

    [24]

    Sorescu M, Diamandescu L, Tarabasanu-Michaila D, Teodorescu V S 2004 J. Mater. Sci. 39 675

    [25]

    Bhosle V, Tiwari A, Narayan J 2006 J. Appl. Phys. 100 033713

    [26]

    Zhang X J, Wang G Q, Wang Q P, Gong X Y, Wu X H, Ma H L 2008 Chin. J. Lumin. 29 451 (in Chinese) [张锡健, 王国强, 王卿璞, 龚小燕, 吴小惠, 马洪磊 2008 发光学报 29 451]

    [27]

    Xu X L, Xu J, Xu C M, Yang X J, Guo C X, Shi C S 2003 Chin. J. Lumin. 24 171 (in Chinese) [许小亮, 徐军, 徐传明, 杨晓杰, 郭常新, 施朝淑 2003 发光学报 24 171]

    [28]

    Lim J, Shin K, Kim H W, Lee C 2004 Mater. Sci. Eng. B 107 301

    [29]

    Zhong M, Li Y B, Tolizono T, Zheng M J, Yamada I, Delaunay J J 2012 J. Nanopart. Res. 14 804

    [30]

    Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S 2000 Appl. Surf. Sci. 158 134

    [31]

    Hirschwald W H 1985 Acc Chem. Res. 18 228

    [32]

    Zhang L T, Wei L, Zhang Y, Zhang W F 2007 Chin. J. Lumin. 28 561 (in Chinese) [张丽亭, 魏凌, 张杨, 张伟风 2007 发光学报 28 561]

    [33]

    Ma Y, Wang W L, Liao K J, L J W, Sun X N 2004 J. Funct. Mater. 35 139 (in Chinese) [马勇, 王万录, 廖克俊, 吕建伟, 孙晓楠 2004 功能材料 35 139]

    [34]

    Xu P S, Sun Y M, Shi C S, Xu F Q, Pa H B 2003 Nucl. Instrum. Meth. A 199 286

  • [1]

    Liang H K, Yu S F, Yang H Y 2010 Appl. Phys. Lett. 96 101116

    [2]

    Lupan O, Pauporte T, Viana B, Tiginyanu I M, Ursaki V V, Cortes R 2010 ACS Appl. Mater. Inter. 2 2083

    [3]

    Zhang L C, Zhao F Z, Wang F F, Li Q S 2013 Chin. Phys. B 22 128502

    [4]

    Heredia E, Bojorge C, Casanova J, Canepa H, Craievich A, Kellermann G 2014 Appl. Surf. Sci. 317 19

    [5]

    Gao L, Zhang Y, Zhang J M, Xu K W 2011 Appl. Surf. Sci. 257 2498

    [6]

    El-Desoky M M, Ali M A, Afifi G, Imam H 2014 J. Mater. Sci.-Mater. El. 25 5071

    [7]

    Shinde S S, Shinde P S, Oh Y W, Haranath D, Bhosale C H, Rajpure K Y 2012 Appl. Surf. Sci. 258 9969

    [8]

    Miyake A, Kominami H, Tatsuoka H, Kuwabara H, Nakanishi Y, Hatanaka Y 2000 Jpn. J. Appl. Phys. 39 L1186

    [9]

    Kaul A R, Gorbenko O Y, Botev A N, Burova L I 2005 Superlattice Microst. 38 272

    [10]

    Fan X M, Lian J S, Guo Z X, Lu H J 2005 J. Cryst. Growth 279 447

    [11]

    Vanheusden K, Seager C H, Warren W L, Tallant D R, Voigt J A 1996 Appl. Phys. Lett. 68 403

    [12]

    Liu M, Kitai A H, Mascher P 1992 J. Lumin. 54 35

    [13]

    Kohan A F, Ceder G, Morgan D, van de Walle C 2000 Phys. Rev. B 61 15019

    [14]

    Ding L H, Yang Y X, Jiang X W, Zhu C S, Chen G R 2008 J. Non-Cryst. Solids 354 1382

    [15]

    Shen Q H, Gao Z W, Ding H Y, Zhang G H, Pan N, Wang X P 2012 Acta Phys. Sin. 61 167105 (in Chinese) [沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平 2012 61 167105]

    [16]

    Yang Q, Saeki Y, Izumi S, Nukui T, Tackeuchi A, Ishida A, Tatsuoka H 2010 Appl. Surf. Sci. 256 6928

    [17]

    Sim K U, Shin S W, Moholkar A V, Yun J H, Moon J H, Kim J H 2010 Curr. Appl. Phys. 10 S463

    [18]

    Park G C, Hwang S M, Choi J H, Kwon Y H, Cho H K, Kim S W, Lim J H, Joo J 2013 Phys. Status Solidi A 210 1552

    [19]

    Qiao B, Tang Z L, Zhang Z T, Chen L 2006 Acta Phys. Chim. Sin. 10 1291

    [20]

    Zhong J, Muthukumar S, Chen Y, Lu Y, Ng H M, Jiang W, Garfunkel E L 2003 Appl. Phys. Lett. 83 3401

    [21]

    Yang Q, Zhou X H, Nukui T, Saeki Y, Izumi S, Tackeuchi A, Tatsuoka H, Liang S H 2014 AIP Adv. 4 027101

    [22]

    Lee S Y, Song Y W, Jeon K A 2008 J. Cryst. Growth. 310 4477

    [23]

    Hou Q Y, Dong H Y, Ma W, Zhao C W 2013 Acta Phys. Sin. 62 157101 (in Chinese) [侯清玉, 董红英, 马文, 赵春旺 2013 62 157101]

    [24]

    Sorescu M, Diamandescu L, Tarabasanu-Michaila D, Teodorescu V S 2004 J. Mater. Sci. 39 675

    [25]

    Bhosle V, Tiwari A, Narayan J 2006 J. Appl. Phys. 100 033713

    [26]

    Zhang X J, Wang G Q, Wang Q P, Gong X Y, Wu X H, Ma H L 2008 Chin. J. Lumin. 29 451 (in Chinese) [张锡健, 王国强, 王卿璞, 龚小燕, 吴小惠, 马洪磊 2008 发光学报 29 451]

    [27]

    Xu X L, Xu J, Xu C M, Yang X J, Guo C X, Shi C S 2003 Chin. J. Lumin. 24 171 (in Chinese) [许小亮, 徐军, 徐传明, 杨晓杰, 郭常新, 施朝淑 2003 发光学报 24 171]

    [28]

    Lim J, Shin K, Kim H W, Lee C 2004 Mater. Sci. Eng. B 107 301

    [29]

    Zhong M, Li Y B, Tolizono T, Zheng M J, Yamada I, Delaunay J J 2012 J. Nanopart. Res. 14 804

    [30]

    Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S 2000 Appl. Surf. Sci. 158 134

    [31]

    Hirschwald W H 1985 Acc Chem. Res. 18 228

    [32]

    Zhang L T, Wei L, Zhang Y, Zhang W F 2007 Chin. J. Lumin. 28 561 (in Chinese) [张丽亭, 魏凌, 张杨, 张伟风 2007 发光学报 28 561]

    [33]

    Ma Y, Wang W L, Liao K J, L J W, Sun X N 2004 J. Funct. Mater. 35 139 (in Chinese) [马勇, 王万录, 廖克俊, 吕建伟, 孙晓楠 2004 功能材料 35 139]

    [34]

    Xu P S, Sun Y M, Shi C S, Xu F Q, Pa H B 2003 Nucl. Instrum. Meth. A 199 286

  • [1] Zhang Li, Xu Ming, Yu Fei, Yuan Huan, Ma Tao. Crystal structures and optical properties of(Fe, Co)-codoped ZnO thin films. Acta Physica Sinica, 2013, 62(2): 027501. doi: 10.7498/aps.62.027501
    [2] Wu Zhong-Hao, Xu Ming, Duan Wen-Qian. Effects of Fe doping on the crystal structures and photoluminescences of ZnO: Ni thin films prepared by sol-gel method. Acta Physica Sinica, 2012, 61(13): 137502. doi: 10.7498/aps.61.137502
    [3] Shen Qing-He, Gao Zhi-Wei, Ding Huai-Yi, Zhang Guang-Hui, Pan Nan, Wang Xiao-Ping. Suppression of visible light emission of ZnO nanostructures by Ga-doping. Acta Physica Sinica, 2012, 61(16): 167105. doi: 10.7498/aps.61.167105
    [4] Wu Yan-Nan, Xu Ming, Wu Ding-Cai, Dong Cheng-Jun, Zhang Pei-Pei, Ji Hong-Xuan, He Lin. Effects of Co and/or Sn doping on crystal structures and optical properties of ZnO thin films. Acta Physica Sinica, 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [5] Gao Li, Zhang Jian-Min. Photoluminescence of diluted Mg doped ZnO thin films and band-gap change mechanisms. Acta Physica Sinica, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [6] Liu Chun-Ming, Fang Li-Mei, Zu Xiao-Tao. Photoluminescence and magnetic properties of cobalt doped SnO2 nano-powder. Acta Physica Sinica, 2009, 58(2): 936-940. doi: 10.7498/aps.58.936
    [7] Wu Ding-Cai, Hu Zhi-Gang, Duan Man-Yi, Xu Lu-Xiang, Liu Fang-Shu, Dong Cheng-Jun, Wu Yan-Nan, Ji Hong-Xuan, Xu Ming. Synthesis and photoluminescence of (Co, Cu)-doped ZnO thin films. Acta Physica Sinica, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [8] Liao Guo-Jin, Yan Shao-Feng, Ba De-Chun. The blue luminescence of cerium doped aluminum oxide thin film. Acta Physica Sinica, 2008, 57(11): 7327-7332. doi: 10.7498/aps.57.7327
    [9] Zhao Yue-Zhi, Chen Chang-Le, Gao Guo-Mian, Yang Xiao-Guang, Yuan Xiao, Song Zhou-Mo. Structure and optical properties of Mn doped ZnO thin films. Acta Physica Sinica, 2006, 55(6): 3132-3135. doi: 10.7498/aps.55.3132
    [10] Sun Cheng-Wei, Liu Zhi-Wen, Zhang Qing-Yu. Influence of annealing temperature on the microstructure and photoluminescence of ZnO films. Acta Physica Sinica, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [11] Yuan Yan-Hong, Hou Xun, Gao Heng. Effect of ultrasonic treatment on ZnO film photoluminescence. Acta Physica Sinica, 2006, 55(1): 446-449. doi: 10.7498/aps.55.446
    [12] Xu Bo, Yu Qing-Xuan, Wu Qi-Hong, Liao Yuan, Wang Guan-Zhong, Fang Rong-Chuan. Effects of strain and Mg-dopant on the photoluminescencespectra in p-type GaN. Acta Physica Sinica, 2004, 53(1): 204-209. doi: 10.7498/aps.53.204
    [13] Li Huo-Quan, Ning Zhao-Yuan, Cheng Shan-Hua, Jiang Mei-Fu. Photoluminescence centers and shift of ZnO films deposited by rf magnetron sputtering. Acta Physica Sinica, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
    [14] Peng Xing-Ping, Lan Wei, Tan Yong-Sheng, Tong Li-Guo, Wang Yin-Yue. Photoluminescent properties of Cu-doped ZnO thin films. Acta Physica Sinica, 2004, 53(8): 2705-2709. doi: 10.7498/aps.53.2705
    [15] Song Yong-Liang, Ji Zhen-Guo, Liu Kun, Wang Chao, Xiang Yin, Ye Zhi-Zhen. Influences of processing parameters on the properties of ZnO thin films prepared by sol-gel spin-coating. Acta Physica Sinica, 2004, 53(2): 636-639. doi: 10.7498/aps.53.636
    [16] Zhang De-Heng, Wang Qing-Pu, Xue Zhong-Ying. Ultra violet photoluminescenc of ZnO films on different substrates. Acta Physica Sinica, 2003, 52(6): 1484-1487. doi: 10.7498/aps.52.1484
    [17] Fang Ze-Bo, Gong Heng-Xiang, Liu Xue-Qin, Xu Da-Yin, Huang Chun-Ming, Wang Yin-Yue. Effects of annealing on the structure and photoluminescence of ZnO films. Acta Physica Sinica, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
    [18] Zhang Xi-Tian, Xiao Zhi-Yan, Zhang Wei-Li, Gao Hong, Wang Yu-Xi, Liu Yi-Chun, Zhang Ji-Ying, Xu Wu. A study on photoluminescence characterization of high-quality nanocrystalline ZnO thin films. Acta Physica Sinica, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [19] MA SHU-YI, QIN GUO-GANG, YOU LI-PING, WANG YIN-YUE. COMPARATIVE STUDY ON PHOTOLUMINESCENCE FROM Si-CONTAINING SILICON OXIDE FILMS AND Ge-CONTAINING SILICON OXIDE FILMS. Acta Physica Sinica, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
    [20] LIN BI-XIA, FU ZHU-XI, JIA YUN-BO, LIAO GUI-HONG. THE ULTRAVIOLET AND GREEN LUMINESCENCE CENTERS IN UNDOPED ZINC OXIDE FILMS. Acta Physica Sinica, 2001, 50(11): 2208-2211. doi: 10.7498/aps.50.2208
Metrics
  • Abstract views:  6770
  • PDF Downloads:  842
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2014
  • Accepted Date:  26 November 2014
  • Published Online:  05 April 2015

/

返回文章
返回
Baidu
map