-
ZnO has a wide direct band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature, which is recognized as one of the promising semiconductors for optoelectronic device applications. However, ZnO generally displays visible defect-related deep-level emission and/or UV near-band-edge emission, which is strongly dependent on the growth method and condition. It has been reported that doping with IIIA elements can improve the optical properties of ZnO. Among them, Ga doping is considered not to induce large lattice distortion of ZnO due to the fact that the bonding lengths of Ga-O and Zn-O are similar and ionic radii of Ga3+ and Zn2+ are also similar. The gallium related compounds such as triethylgallium, gallium nitrate and gallium oxide are used as the Ga doping sources. It has been proved that ZnO film can be grown directly by the thermal oxidation of ZnS substrate. In this research, the Ga doping is adopted in the growth of ZnO film by applying the molten gallium to the surface of ZnS substrate and performing the subsequent thermal oxidation in the air at 650 and 700 °C for 3 and 8 h, respectively. The effects of growth condition on the microstructures and photoluminescence properties of the Ga-doped ZnO film are investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and photoluminescence at room temperature. In addition, the relationship among the oxidation temperature, oxidation time, Ga doping content and photoluminescence properties is discussed. The results show that the Ga-doped ZnO films grown under different growth conditions exhibit various amounts of Ga content and the gallium is present in the ZnO matrix as Ga3+ by partially substituting Zn2+. The Ga doping affects the microstructure and photoluminescence property by changing the defect type and level, stoichiometric ratio, and crystal quality of ZnO film. As the oxidation temperature increases, the amount of Ga doping content increases. In addition, the grain size of the Ga-doped ZnO film increases and becomes uniform, and the ratio of ultraviolet emission intensity to visible emission intensity increases. However, as the oxidation time increases, the amount of Ga doping content decreases, the grain size of the Ga-doped ZnO film becomes non-uniform, and the ratio of ultraviolet emission intensity to visible emission intensity decreases.
-
Keywords:
- ZnO film /
- Ga doping /
- thermal oxidation /
- photoluminescence
[1] Liang H K, Yu S F, Yang H Y 2010 Appl. Phys. Lett. 96 101116
[2] Lupan O, Pauporte T, Viana B, Tiginyanu I M, Ursaki V V, Cortes R 2010 ACS Appl. Mater. Inter. 2 2083
[3] Zhang L C, Zhao F Z, Wang F F, Li Q S 2013 Chin. Phys. B 22 128502
[4] Heredia E, Bojorge C, Casanova J, Canepa H, Craievich A, Kellermann G 2014 Appl. Surf. Sci. 317 19
[5] Gao L, Zhang Y, Zhang J M, Xu K W 2011 Appl. Surf. Sci. 257 2498
[6] El-Desoky M M, Ali M A, Afifi G, Imam H 2014 J. Mater. Sci.-Mater. El. 25 5071
[7] Shinde S S, Shinde P S, Oh Y W, Haranath D, Bhosale C H, Rajpure K Y 2012 Appl. Surf. Sci. 258 9969
[8] Miyake A, Kominami H, Tatsuoka H, Kuwabara H, Nakanishi Y, Hatanaka Y 2000 Jpn. J. Appl. Phys. 39 L1186
[9] Kaul A R, Gorbenko O Y, Botev A N, Burova L I 2005 Superlattice Microst. 38 272
[10] Fan X M, Lian J S, Guo Z X, Lu H J 2005 J. Cryst. Growth 279 447
[11] Vanheusden K, Seager C H, Warren W L, Tallant D R, Voigt J A 1996 Appl. Phys. Lett. 68 403
[12] Liu M, Kitai A H, Mascher P 1992 J. Lumin. 54 35
[13] Kohan A F, Ceder G, Morgan D, van de Walle C 2000 Phys. Rev. B 61 15019
[14] Ding L H, Yang Y X, Jiang X W, Zhu C S, Chen G R 2008 J. Non-Cryst. Solids 354 1382
[15] Shen Q H, Gao Z W, Ding H Y, Zhang G H, Pan N, Wang X P 2012 Acta Phys. Sin. 61 167105 (in Chinese) [沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平 2012 61 167105]
[16] Yang Q, Saeki Y, Izumi S, Nukui T, Tackeuchi A, Ishida A, Tatsuoka H 2010 Appl. Surf. Sci. 256 6928
[17] Sim K U, Shin S W, Moholkar A V, Yun J H, Moon J H, Kim J H 2010 Curr. Appl. Phys. 10 S463
[18] Park G C, Hwang S M, Choi J H, Kwon Y H, Cho H K, Kim S W, Lim J H, Joo J 2013 Phys. Status Solidi A 210 1552
[19] Qiao B, Tang Z L, Zhang Z T, Chen L 2006 Acta Phys. Chim. Sin. 10 1291
[20] Zhong J, Muthukumar S, Chen Y, Lu Y, Ng H M, Jiang W, Garfunkel E L 2003 Appl. Phys. Lett. 83 3401
[21] Yang Q, Zhou X H, Nukui T, Saeki Y, Izumi S, Tackeuchi A, Tatsuoka H, Liang S H 2014 AIP Adv. 4 027101
[22] Lee S Y, Song Y W, Jeon K A 2008 J. Cryst. Growth. 310 4477
[23] Hou Q Y, Dong H Y, Ma W, Zhao C W 2013 Acta Phys. Sin. 62 157101 (in Chinese) [侯清玉, 董红英, 马文, 赵春旺 2013 62 157101]
[24] Sorescu M, Diamandescu L, Tarabasanu-Michaila D, Teodorescu V S 2004 J. Mater. Sci. 39 675
[25] Bhosle V, Tiwari A, Narayan J 2006 J. Appl. Phys. 100 033713
[26] Zhang X J, Wang G Q, Wang Q P, Gong X Y, Wu X H, Ma H L 2008 Chin. J. Lumin. 29 451 (in Chinese) [张锡健, 王国强, 王卿璞, 龚小燕, 吴小惠, 马洪磊 2008 发光学报 29 451]
[27] Xu X L, Xu J, Xu C M, Yang X J, Guo C X, Shi C S 2003 Chin. J. Lumin. 24 171 (in Chinese) [许小亮, 徐军, 徐传明, 杨晓杰, 郭常新, 施朝淑 2003 发光学报 24 171]
[28] Lim J, Shin K, Kim H W, Lee C 2004 Mater. Sci. Eng. B 107 301
[29] Zhong M, Li Y B, Tolizono T, Zheng M J, Yamada I, Delaunay J J 2012 J. Nanopart. Res. 14 804
[30] Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S 2000 Appl. Surf. Sci. 158 134
[31] Hirschwald W H 1985 Acc Chem. Res. 18 228
[32] Zhang L T, Wei L, Zhang Y, Zhang W F 2007 Chin. J. Lumin. 28 561 (in Chinese) [张丽亭, 魏凌, 张杨, 张伟风 2007 发光学报 28 561]
[33] Ma Y, Wang W L, Liao K J, L J W, Sun X N 2004 J. Funct. Mater. 35 139 (in Chinese) [马勇, 王万录, 廖克俊, 吕建伟, 孙晓楠 2004 功能材料 35 139]
[34] Xu P S, Sun Y M, Shi C S, Xu F Q, Pa H B 2003 Nucl. Instrum. Meth. A 199 286
-
[1] Liang H K, Yu S F, Yang H Y 2010 Appl. Phys. Lett. 96 101116
[2] Lupan O, Pauporte T, Viana B, Tiginyanu I M, Ursaki V V, Cortes R 2010 ACS Appl. Mater. Inter. 2 2083
[3] Zhang L C, Zhao F Z, Wang F F, Li Q S 2013 Chin. Phys. B 22 128502
[4] Heredia E, Bojorge C, Casanova J, Canepa H, Craievich A, Kellermann G 2014 Appl. Surf. Sci. 317 19
[5] Gao L, Zhang Y, Zhang J M, Xu K W 2011 Appl. Surf. Sci. 257 2498
[6] El-Desoky M M, Ali M A, Afifi G, Imam H 2014 J. Mater. Sci.-Mater. El. 25 5071
[7] Shinde S S, Shinde P S, Oh Y W, Haranath D, Bhosale C H, Rajpure K Y 2012 Appl. Surf. Sci. 258 9969
[8] Miyake A, Kominami H, Tatsuoka H, Kuwabara H, Nakanishi Y, Hatanaka Y 2000 Jpn. J. Appl. Phys. 39 L1186
[9] Kaul A R, Gorbenko O Y, Botev A N, Burova L I 2005 Superlattice Microst. 38 272
[10] Fan X M, Lian J S, Guo Z X, Lu H J 2005 J. Cryst. Growth 279 447
[11] Vanheusden K, Seager C H, Warren W L, Tallant D R, Voigt J A 1996 Appl. Phys. Lett. 68 403
[12] Liu M, Kitai A H, Mascher P 1992 J. Lumin. 54 35
[13] Kohan A F, Ceder G, Morgan D, van de Walle C 2000 Phys. Rev. B 61 15019
[14] Ding L H, Yang Y X, Jiang X W, Zhu C S, Chen G R 2008 J. Non-Cryst. Solids 354 1382
[15] Shen Q H, Gao Z W, Ding H Y, Zhang G H, Pan N, Wang X P 2012 Acta Phys. Sin. 61 167105 (in Chinese) [沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平 2012 61 167105]
[16] Yang Q, Saeki Y, Izumi S, Nukui T, Tackeuchi A, Ishida A, Tatsuoka H 2010 Appl. Surf. Sci. 256 6928
[17] Sim K U, Shin S W, Moholkar A V, Yun J H, Moon J H, Kim J H 2010 Curr. Appl. Phys. 10 S463
[18] Park G C, Hwang S M, Choi J H, Kwon Y H, Cho H K, Kim S W, Lim J H, Joo J 2013 Phys. Status Solidi A 210 1552
[19] Qiao B, Tang Z L, Zhang Z T, Chen L 2006 Acta Phys. Chim. Sin. 10 1291
[20] Zhong J, Muthukumar S, Chen Y, Lu Y, Ng H M, Jiang W, Garfunkel E L 2003 Appl. Phys. Lett. 83 3401
[21] Yang Q, Zhou X H, Nukui T, Saeki Y, Izumi S, Tackeuchi A, Tatsuoka H, Liang S H 2014 AIP Adv. 4 027101
[22] Lee S Y, Song Y W, Jeon K A 2008 J. Cryst. Growth. 310 4477
[23] Hou Q Y, Dong H Y, Ma W, Zhao C W 2013 Acta Phys. Sin. 62 157101 (in Chinese) [侯清玉, 董红英, 马文, 赵春旺 2013 62 157101]
[24] Sorescu M, Diamandescu L, Tarabasanu-Michaila D, Teodorescu V S 2004 J. Mater. Sci. 39 675
[25] Bhosle V, Tiwari A, Narayan J 2006 J. Appl. Phys. 100 033713
[26] Zhang X J, Wang G Q, Wang Q P, Gong X Y, Wu X H, Ma H L 2008 Chin. J. Lumin. 29 451 (in Chinese) [张锡健, 王国强, 王卿璞, 龚小燕, 吴小惠, 马洪磊 2008 发光学报 29 451]
[27] Xu X L, Xu J, Xu C M, Yang X J, Guo C X, Shi C S 2003 Chin. J. Lumin. 24 171 (in Chinese) [许小亮, 徐军, 徐传明, 杨晓杰, 郭常新, 施朝淑 2003 发光学报 24 171]
[28] Lim J, Shin K, Kim H W, Lee C 2004 Mater. Sci. Eng. B 107 301
[29] Zhong M, Li Y B, Tolizono T, Zheng M J, Yamada I, Delaunay J J 2012 J. Nanopart. Res. 14 804
[30] Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S 2000 Appl. Surf. Sci. 158 134
[31] Hirschwald W H 1985 Acc Chem. Res. 18 228
[32] Zhang L T, Wei L, Zhang Y, Zhang W F 2007 Chin. J. Lumin. 28 561 (in Chinese) [张丽亭, 魏凌, 张杨, 张伟风 2007 发光学报 28 561]
[33] Ma Y, Wang W L, Liao K J, L J W, Sun X N 2004 J. Funct. Mater. 35 139 (in Chinese) [马勇, 王万录, 廖克俊, 吕建伟, 孙晓楠 2004 功能材料 35 139]
[34] Xu P S, Sun Y M, Shi C S, Xu F Q, Pa H B 2003 Nucl. Instrum. Meth. A 199 286
Catalog
Metrics
- Abstract views: 6770
- PDF Downloads: 842
- Cited By: 0