搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

本征富受主型ZnO微米管光致发光的温度调控机制

王强 杨立学 刘北云 闫胤洲 陈飞 蒋毅坚

引用本文:
Citation:

本征富受主型ZnO微米管光致发光的温度调控机制

王强, 杨立学, 刘北云, 闫胤洲, 陈飞, 蒋毅坚

Thermal regulation mechanism of photoluminescence in intrinsic acceptor-rich ZnO microtube

Wang Qiang, Yang Li-Xue, Liu Bei-Yun, Yan Yin-Zhou, Chen Fei, Jiang Yi-Jian
PDF
HTML
导出引用
  • 热效应是影响半导体器件发光性能的最关键因素之一. 本文针对光学气化过饱和析出法制备的本征富受主型ZnO微米管, 系统研究了其光致发光的温度调控机制. 研究表明, 所制备ZnO微米管具有规则的六边形截面形貌, 长度达5 mm、直径达100 μm, 室温下的光学带隙约为3.30 eV; 随着环境温度的提高, 其光致发光强度呈现“热淬灭-负热淬灭-热淬灭”的反常变化. 在80—200 K温区内的热淬灭行为与浅施主的退/电离、自由激子热离化以及中性受主束缚激子的转变有关; 在200—240 K温区内发生的负热淬灭行为与导带底以下488 meV处深能级陷阱上电子的热激发有关; 在240—470 K温区内发生的热淬灭行为则与导带底以下628 meV处非辐射复合中心的Shockley Read-Hall复合有关. 非辐射复合中心和陷阱中心的形成均与本征富受主型ZnO微米管的氧空位缺陷有关. 上述研究结果在高温高效富受主型ZnO微米管基光电器件的设计与研发方面具有重要指导意义.
    Thermal effect is one of the most important factors limiting the photoluminescence performances of semiconductor devices. With the increase of temperature, the PL intensity decreases gradually due to the effect of thermal quenching. However, the abnormal negative thermal quenching effect has been found in many semiconductor materials in recent years, e.g. ZnO, BiFeO3, InPBi, etc. This effect is generally considered as the sign of the existence for middle/local energy state in the electron-hole recombination process, which usually needs to be confirmed by the temperature-dependent PL spectra. Here, we report the thermal regulation mechanism of photoluminescence in intrinsic acceptor-rich ZnO (A-ZnO) microtubes grown by the optical vapour supersaturated precipitation method. The grown A-ZnO microtube with a length of 5 mm and diameter of 100 μm has regular hexagonal cross-section morphology. Its optical band gap at room temperature is about 3.30 eV. With the increase of temperature, the PL intensity of A-ZnO microtube exhibits an abnormal behavior from the thermal quenching to the negative thermal quenching and then to the thermal quenching. The thermal quenching effect at 80–200 K is associated with regurgitation/ionization of shallow donor, thermal ionization of free exciton, and conversion of neutral acceptor bound exciton. The negative thermal quenching effect at 200–240 K is associated with thermal excitation of electrons in a deep level trap of 488 meV below the conduction band minimum (CBM). The thermal quenching effect at 240–470 K is related to Shockley-Read-Hall recombination based on the non-radiative recombination center of 628 meV below the CBM. The non-radiative recombination center and trap level are far from the acceptor level of A-ZnO microtube, which may be related to the deep-level defect of oxygen vacancy in the intrinsic A-ZnO microtube. This work establishes the temperature-dependent transition model of photo-generated carriers and reveals the thermal regulation mechanism of PL for the A-ZnO microtubes. It provides a novel platform for designing the high-temperature and high-efficiency ZnO-based photoelectric devices.
      通信作者: 蒋毅坚, jiangyijian@bipt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674018)、北京市科技新星计划(批准号: Z171100001117101)和北京石油化工学院科技创新资助项目(批准号: 15031862005/298)资助的课题.
      Corresponding author: Jiang Yi-Jian, jiangyijian@bipt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11674018), the Beijing Nova Program, China (Grant No. Z171100001117101), and the Science and Technology Innovation Project of Beijing Institute of Petrochemical Technology, China (Grant No.15031862005/298)
    [1]

    Chen X, Wu X, Yue L, Zhu L, Pan W, Qi Z, Shao J 2017 Appl. Phys. Lett. 110 051903Google Scholar

    [2]

    Prashanthi K, Antić Ž, Thakur G, Dramićanin M D, Thundat T 2018 Phys. Status Solidi RRL 12 1700352Google Scholar

    [3]

    Wu Y, Li J, Ding H, Gao Z, Wu Y, Pan N, Wang X 2015 Phys. Chem. Chem. Phys. 17 5360Google Scholar

    [4]

    Tangi M, Shakfa M K, Mishra P, Li M Y, Chiu M H, Ng T K, Ooi B S 2017 Opt. Mater. Express 7 3697Google Scholar

    [5]

    Lei L, Xia J, Cheng Y, Wang Y, Bai G, Xia H, Xu S 2018 J. Mater. Chem. C 6 11587Google Scholar

    [6]

    Zhu H, Shan C X, Li B H, Zhang Z Z, Zhang J Y, Yao B, Shen D Z, Fan X W 2009 J. Appl. Phys. 105 103508Google Scholar

    [7]

    秦莉, 张喜田, 梁瑶, 张锷, 高红, 张治国 2006 55 3119Google Scholar

    Qin L, Zhang X T, Liang Y, Zhang E, Gao H, Zhang Z G 2006 Acta. Phys. Sin. 55 3119Google Scholar

    [8]

    谢修华, 李炳辉, 张振中, 刘雷, 刘可为, 单崇新, 申德振 2019 68 167802Google Scholar

    Xie X H, Li B H, Zhang Z Z, Liu L, Liu K W, Shan C X, Shen D Z 2019 Acta. Phys. Sin. 68 167802Google Scholar

    [9]

    Doherty T A, Winchester A J, Macpherson S, Johnstone D N, Pareek V, Tennyson E M, Andaji-Garmaroudi Z, Stranks S D 2020 Nature 580 360Google Scholar

    [10]

    Ni Z, Bao C, Liu Y, Jiang Q, Wu W Q, Chen S, Holman Z, Huang J S 2020 Science 367 1352Google Scholar

    [11]

    Zhu H, Shan C X, Yao B, Li B H, Zhang J Y, Zhang Z Z, Tang Z K 2009 Adv. Mater. 21 1613Google Scholar

    [12]

    Dai J, Xu C X, Sun X W 2011 Adv. Mater. 23 4115Google Scholar

    [13]

    刘姿, 张恒, 吴昊, 刘昌 2019 68 107301Google Scholar

    Liu Z, Zhang H, Wu H, Liu C 2019 Acta. Phys. Sin. 68 107301Google Scholar

    [14]

    You D, Xu C, Zhang W, Zhao J, Qin F, Shi Z 2019 Nano Energy 62 310Google Scholar

    [15]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 68 87101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta. Phys. Sin. 68 87101Google Scholar

    [16]

    Teke A, Özgür Ü, Doğan S, Gu X, Morkoç H, Nemeth B, Everitt H O 2004 Phys. Rev. B 70 195207Google Scholar

    [17]

    Ahrenkiel R K 1993 Semiconduct. Semimet. 39 9

    [18]

    Wang Q, Yan Y, Zeng Y, Lu Y, Chen L, Jiang Y 2016 Sci. Rep. 6 27341Google Scholar

    [19]

    Wang Q, Yan Y, Qin F, Xu C, Liu X, Tan P, Li L, Zhao Y, Zeng Y, Jiang Y 2017 NPG Asia Mater. 9 e442Google Scholar

    [20]

    Xia W, Wang Y, Wang Q, Yan Y, Jiang Y 2020 Appl. Surf. Sci. 506 145008Google Scholar

    [21]

    Wang Q, Yan Y, Tong F, Zhai T, Xing C, Zeng Y, Feng C, Zhao Y, Jiang Y 2019 J. Lumin. 208 238Google Scholar

    [22]

    Wang Q, Yan Y, Zeng Y, Jiang Y 2017 J. Cryst. Growth 468 638Google Scholar

    [23]

    Coulter J B, Birnie III D P 2018 Phys. Status Solidi B 255 1700393Google Scholar

    [24]

    Shibata H 1998 Jpn. J. Appl. Phys. 37 550Google Scholar

    [25]

    Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M, Doğan S, Morkoç A H 2005 J. Appl. Phys. 98 11Google Scholar

    [26]

    Van de Walle C G 2001 Physica B 308 899Google Scholar

    [27]

    Wang L, Zhang X, Zhao S, Zhou G, Zhou Y, Qi J 2005 Appl. Phys. Lett. 86 024108Google Scholar

    [28]

    Chen Z, Wu N, Shan Z, Zhao M, Li S, Jiang C B, Mao S X 2005 Scr. Mater. 52 63Google Scholar

    [29]

    Varshni Y P 1967 Physica 34 149Google Scholar

  • 图 1  单根A-ZnO微米管的SEM图:(a)整体; (b)中部; (c)管口

    Fig. 1.  (a) Overview, (b) side-wall view, and (c) close-up view of the A-ZnO microtube by SEM.

    图 2  A-ZnO微米管粉末的吸收光谱, 插图为由吸收光谱所得Tauc曲线

    Fig. 2.  The absorbance spectrum of powdered A-ZnO microtube. Inset: Tauc plot.

    图 3  (a)A-ZnO微米管在温度为80, 270和470 K时的PL光谱. A-ZnO微米管在不同温度区间内的变温PL光谱: (b) 80−200 K; (c) 200−240 K; (d) 240−470 K

    Fig. 3.  (a) PL spectra of a single A-ZnO microtube at 80, 270, and 470 K, respectively. Temperature-dependent PL spectra of single A-ZnO microtube in different temperature ranges of (b) 80—200 K, (c) 200−240 K, (d) 240−470 K.

    图 4  (a) FX→NBE, FA→NBE, DAP发光峰强度随温度的变化及其拟合曲线; (b)FX和FA发光峰位随温度的变化及其拟合曲线

    Fig. 4.  (a) PL intensity of FX→NBE, FA→NBE, DAP emissions as a function of temperature, and their fitting curves; (b) peak energy of FX and FA emissions as a function of temperature, and their fitting curves.

    图 5  A-ZnO微米管主要PL发光峰在不同温度区间内的复合行为示意图, 其中Eb为自由激子结合能, 约60 meV

    Fig. 5.  Schematic diagram of recombination behavior for main PL emissions of A-ZnO microtube in different temperature ranges, Eb is free exciton binding energy, about 60 meV.

    表 1  不同PL发光峰热效应的拟合活化能

    Table 1.  Fitting activation energy of thermal effect for different PL emissions.

    发光特性$ {E}_{1}' $ / meVE1 / meVE2 / meV
    FA→NBE48862857
    FX→NBE43157239
    DAP42457055
    下载: 导出CSV
    Baidu
  • [1]

    Chen X, Wu X, Yue L, Zhu L, Pan W, Qi Z, Shao J 2017 Appl. Phys. Lett. 110 051903Google Scholar

    [2]

    Prashanthi K, Antić Ž, Thakur G, Dramićanin M D, Thundat T 2018 Phys. Status Solidi RRL 12 1700352Google Scholar

    [3]

    Wu Y, Li J, Ding H, Gao Z, Wu Y, Pan N, Wang X 2015 Phys. Chem. Chem. Phys. 17 5360Google Scholar

    [4]

    Tangi M, Shakfa M K, Mishra P, Li M Y, Chiu M H, Ng T K, Ooi B S 2017 Opt. Mater. Express 7 3697Google Scholar

    [5]

    Lei L, Xia J, Cheng Y, Wang Y, Bai G, Xia H, Xu S 2018 J. Mater. Chem. C 6 11587Google Scholar

    [6]

    Zhu H, Shan C X, Li B H, Zhang Z Z, Zhang J Y, Yao B, Shen D Z, Fan X W 2009 J. Appl. Phys. 105 103508Google Scholar

    [7]

    秦莉, 张喜田, 梁瑶, 张锷, 高红, 张治国 2006 55 3119Google Scholar

    Qin L, Zhang X T, Liang Y, Zhang E, Gao H, Zhang Z G 2006 Acta. Phys. Sin. 55 3119Google Scholar

    [8]

    谢修华, 李炳辉, 张振中, 刘雷, 刘可为, 单崇新, 申德振 2019 68 167802Google Scholar

    Xie X H, Li B H, Zhang Z Z, Liu L, Liu K W, Shan C X, Shen D Z 2019 Acta. Phys. Sin. 68 167802Google Scholar

    [9]

    Doherty T A, Winchester A J, Macpherson S, Johnstone D N, Pareek V, Tennyson E M, Andaji-Garmaroudi Z, Stranks S D 2020 Nature 580 360Google Scholar

    [10]

    Ni Z, Bao C, Liu Y, Jiang Q, Wu W Q, Chen S, Holman Z, Huang J S 2020 Science 367 1352Google Scholar

    [11]

    Zhu H, Shan C X, Yao B, Li B H, Zhang J Y, Zhang Z Z, Tang Z K 2009 Adv. Mater. 21 1613Google Scholar

    [12]

    Dai J, Xu C X, Sun X W 2011 Adv. Mater. 23 4115Google Scholar

    [13]

    刘姿, 张恒, 吴昊, 刘昌 2019 68 107301Google Scholar

    Liu Z, Zhang H, Wu H, Liu C 2019 Acta. Phys. Sin. 68 107301Google Scholar

    [14]

    You D, Xu C, Zhang W, Zhao J, Qin F, Shi Z 2019 Nano Energy 62 310Google Scholar

    [15]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 68 87101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta. Phys. Sin. 68 87101Google Scholar

    [16]

    Teke A, Özgür Ü, Doğan S, Gu X, Morkoç H, Nemeth B, Everitt H O 2004 Phys. Rev. B 70 195207Google Scholar

    [17]

    Ahrenkiel R K 1993 Semiconduct. Semimet. 39 9

    [18]

    Wang Q, Yan Y, Zeng Y, Lu Y, Chen L, Jiang Y 2016 Sci. Rep. 6 27341Google Scholar

    [19]

    Wang Q, Yan Y, Qin F, Xu C, Liu X, Tan P, Li L, Zhao Y, Zeng Y, Jiang Y 2017 NPG Asia Mater. 9 e442Google Scholar

    [20]

    Xia W, Wang Y, Wang Q, Yan Y, Jiang Y 2020 Appl. Surf. Sci. 506 145008Google Scholar

    [21]

    Wang Q, Yan Y, Tong F, Zhai T, Xing C, Zeng Y, Feng C, Zhao Y, Jiang Y 2019 J. Lumin. 208 238Google Scholar

    [22]

    Wang Q, Yan Y, Zeng Y, Jiang Y 2017 J. Cryst. Growth 468 638Google Scholar

    [23]

    Coulter J B, Birnie III D P 2018 Phys. Status Solidi B 255 1700393Google Scholar

    [24]

    Shibata H 1998 Jpn. J. Appl. Phys. 37 550Google Scholar

    [25]

    Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M, Doğan S, Morkoç A H 2005 J. Appl. Phys. 98 11Google Scholar

    [26]

    Van de Walle C G 2001 Physica B 308 899Google Scholar

    [27]

    Wang L, Zhang X, Zhao S, Zhou G, Zhou Y, Qi J 2005 Appl. Phys. Lett. 86 024108Google Scholar

    [28]

    Chen Z, Wu N, Shan Z, Zhao M, Li S, Jiang C B, Mao S X 2005 Scr. Mater. 52 63Google Scholar

    [29]

    Varshni Y P 1967 Physica 34 149Google Scholar

  • [1] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响.  , 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [2] 章建辉, 韩季刚. 控制纳米结构以调控氧化锌的发光、磁性和细胞毒性.  , 2015, 64(9): 097702. doi: 10.7498/aps.64.097702
    [3] 周小东, 张少锋, 周思华. Au纳米颗粒和CdTe量子点复合体系发光增强和猝灭效应.  , 2015, 64(16): 167301. doi: 10.7498/aps.64.167301
    [4] 王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖. 高绒度掺硼氧化锌透明导电薄膜用作非晶硅太阳电池前电极的研究.  , 2014, 63(2): 028801. doi: 10.7498/aps.63.028801
    [5] 朱顺明, 顾然, 黄时敏, 姚峥嵘, 张阳, 陈斌, 毛昊源, 顾书林, 叶建东, 郑有炓. 金属有机源化学气相沉积法生长氧化锌薄膜中氢气的作用及其机理.  , 2014, 63(11): 118103. doi: 10.7498/aps.63.118103
    [6] 任艳东, 郝淑娟, 邱忠阳. 表面等离子体增强氧化锌纳米带发光特性的研究.  , 2013, 62(14): 147302. doi: 10.7498/aps.62.147302
    [7] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响.  , 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [8] 王兴和, 周延怀. 掺纳米锗氧化硅的发光性能研究.  , 2009, 58(6): 4239-4242. doi: 10.7498/aps.58.4239
    [9] 刘春明, 方丽梅, 祖小涛. 钴掺杂二氧化锡纳米粉的光致发光和磁学性质.  , 2009, 58(2): 936-940. doi: 10.7498/aps.58.936
    [10] 杨义发, 李玉华, 龙华, 陆培祥, 杨光, 郑启光. 氧压对飞秒激光沉积ZnO/Si(100)薄膜光学性能的影响.  , 2009, 58(4): 2785-2791. doi: 10.7498/aps.58.2785
    [11] 廖国进, 闫绍峰, 巴德纯. 铈掺杂氧化铝薄膜的蓝紫色发光特性.  , 2008, 57(11): 7327-7332. doi: 10.7498/aps.57.7327
    [12] 肖 竞, 柏 鑫, 张耿民. 整齐排列的氧化锌纳米针阵列的场发射性能.  , 2008, 57(11): 7057-7062. doi: 10.7498/aps.57.7057
    [13] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响.  , 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [14] 姚志涛, 孙新瑞, 许海军, 姜卫粉, 肖顺华, 李新建. 氧化锌/硅纳米孔柱阵列的结构和光致发光特性研究.  , 2007, 56(10): 6098-6103. doi: 10.7498/aps.56.6098
    [15] 倪赛力, 常永勤, 龙 毅, 叶荣昌. 氧化锌纳米棒场发射性能研究.  , 2006, 55(10): 5409-5412. doi: 10.7498/aps.55.5409
    [16] 秦 莉, 张喜田, 梁 瑶, 张 锷, 高 红, 张治国. 氧化锌微米花的共振拉曼和“负热淬灭”效应.  , 2006, 55(6): 3119-3123. doi: 10.7498/aps.55.3119
    [17] 辛显双, 周百斌, 吕树臣, 苏文辉. 掺铕纳米氧化锌的制备及其发光性质.  , 2005, 54(4): 1859-1862. doi: 10.7498/aps.54.1859
    [18] 马忠元, 黄信凡, 朱 达, 李 伟, 陈坤基, 冯 端. 原位等离子体逐层氧化a-Si:H/SiO2多层膜的光致发光研究.  , 2004, 53(8): 2746-2750. doi: 10.7498/aps.53.2746
    [19] 袁放成, 冉广照, 陈源, 张伯蕊, 乔永平, 傅济时, 秦国刚, 马振昌, 宗婉华. 磁控溅射淀积掺Er富Si氧化硅膜中Er3+ 1.54μm光致发光.  , 2001, 50(12): 2487-2491. doi: 10.7498/aps.50.2487
    [20] 马书懿, 秦国刚, 尤力平, 王印月. 含纳米硅和纳米锗的氧化硅薄膜光致发光的比较研究.  , 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
计量
  • 文章访问数:  7211
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-03
  • 修回日期:  2020-06-11
  • 上网日期:  2020-06-17
  • 刊出日期:  2020-10-05

/

返回文章
返回
Baidu
map