Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of plasma on boron-based two-phase flow diffusion combustion

Zhang Peng Hong Yan-Ji Ding Xiao-Yu Shen Shuang-Yan Feng Xi-Ping

Citation:

Effect of plasma on boron-based two-phase flow diffusion combustion

Zhang Peng, Hong Yan-Ji, Ding Xiao-Yu, Shen Shuang-Yan, Feng Xi-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A parallel intake diffusion combustion physical model is designed to study the influence of plasma on the secondary combustion of boron-based gas in the after-burning chamber, with excluding mixing effects of the intake air. The flame images of the diffusion combustion of the boron-based gas in the after-burning chamber are obtained by a high-speed photographic apparatus. The diffusion combustion characteristics of the physical model and the secondary ignition distance of boron particles are analyzed. The King ignition model, finite-rate/eddy-dissipation model, particle-trajectory model, RNG k-ε model, and plasma model are adopted to simulate the influence of plasma on the diffusion combustion of boron-based two-phase flow in a certain condition. The results show that the secondary ignition distance of boron particles, which is based on the boron-based flame image, is consistent well with the numerical simulation result, which verifies the accuracy of the boron-based two-phase flow diffusion combustion numerical model and the calculation method. When the boron-based gas passes through the plasma area, the temperature of the boron particles increases while the diameter decreases significantly on their trajectory. The distribution area of the B2O3 mass fraction increases significantly, and more than 70% boron particles reach a 100% combustion efficiency before they arrive at the area of the two-thirds after-burning chamber. More heat is released by fully burning the boron particles under the influence of plasma, which results in a half increase of the central area. It can be indicated that plasma can obviously enhance the combustion process of the boron-based gas, which improves the combustion efficiency of boron particles and releases more energy.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11372356).
    [1]

    Beckstead M W, Puduppakkam K, Thakre P, Yang V 2007 Prog. Energ. Combust. 33 497

    [2]

    Yu D, Kong C D, Zhuo J K, Yao Q, Li S Q 2015 J. Engineer. Thermophys. 36 922 (in Chinese) [于丹, 孔成栋, 卓建坤, 姚强, 李水清 2015 工程热 36 922]

    [3]

    Fry R S 2004 J. Propul. Power 20 1

    [4]

    Jain A, Anthonysamy S, Ananthasivan K 2010 Thermochim. Acta 500 1

    [5]

    Macek A, Semple J M 1969 Combust. Sci. Technol. 1 181

    [6]

    Ao W, Yang W J, Han Z J, Liu J Z, Zhou J H, Cen K F 2012 J. Solid Rocket Technol. 35 361 (in Chinese) [敖文, 杨卫娟, 韩志江, 刘建忠, 周俊虎, 岑可法 2012 固体火箭技术 35 361]

    [7]

    King M K 1982 J. Spacecraft Rockets 19 294

    [8]

    Young G, Sullivan K, Zachariah M R, Yu K 2009 Combust. Flame 156 322

    [9]

    Wang Y H, Li B X, Hu S Q 2004 Chin. J. Explos. Propel. 27 44 (in Chinese) [王英红, 李葆萱, 胡松起 2004 火炸药学报 2004 27 44]

    [10]

    Liu J, Li J X, Feng X P, Zheng Y 2011 J. Propulsion Technol. 32 355 (in Chinese) [刘杰, 李进贤, 冯喜平, 郑亚 2011 推进技术 32 355]

    [11]

    Hu J X 2006 Ph. D Dissertation (Changsha: National University of Defense Technology) (in Chinese) [胡建新 2006 博士学位论文(长沙: 国防科技大学)]

    [12]

    Ju Y 2014 Adv. Mech. 44 20

    [13]

    Inomata T, Okazaki S, Moriwaki T, Suzuki M 1983 Combust. Flame 50 361

    [14]

    Starikovskaya S M, Kukaev E N, Kuksin A Y 2004 Combust. Flame 139 177

    [15]

    Starikovskaia S M, Kosarev I N, Popov N A, Starikovskii A Yu 2009 40th AIAA Plasmadynamics and Lasers Conference San Antonio, June 22-25, 2009 p3595

    [16]

    Starikovskiy A 2012 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Nashville Tennessee, 2012 p244

    [17]

    Andrey S, Nickolay A 2013 Prog. Energ. Combust. 39 61

    [18]

    Sun W, Won S H, Ombrello T 2013 P. Combust. Inst. 34 847

    [19]

    Aleksandrov N L, Kindysheva S V, Kochetov I V 2014 Plasma Sources Sci. T. 23 015017

    [20]

    Zhang P, Hong Y J, Sheng S Y, Ding X Y 2014 High Volt. Engin. 40 2125 (in Chinese) [张鹏, 洪延姬, 沈双晏, 丁小雨 2014 高电压技术 40 2125]

    [21]

    Lan Y D 2011 Ph. D Dissertation (Xian: Air Force Engineering University) (in Chinese) [兰宇丹 2011 博士学位论文(西安: 空军工程大学)]

    [22]

    Xie Y S, Zhang X B, Yuan Y X, Zhou Y 2003 J. Propulsion Technol. 24 275 (in Chinese) [谢玉树, 张小兵, 袁亚雄, 周跃 2003 推进技术 24 275]

    [23]

    Hu J X, Xia Z X, Zhang W H, Fang Z B, Wang D Q, Huang L Y 2012 Int. J. Eng. Sci. 2012 160620

    [24]

    Hussmann B, Pfitzner M 2010 Combust. Flame 157 803

    [25]

    Hussmann B, Pfitzner M 2010 Combust. Flame 157 822

    [26]

    Shumlak U, Loverich J 2003 J. Comput. Phys. 187 620

  • [1]

    Beckstead M W, Puduppakkam K, Thakre P, Yang V 2007 Prog. Energ. Combust. 33 497

    [2]

    Yu D, Kong C D, Zhuo J K, Yao Q, Li S Q 2015 J. Engineer. Thermophys. 36 922 (in Chinese) [于丹, 孔成栋, 卓建坤, 姚强, 李水清 2015 工程热 36 922]

    [3]

    Fry R S 2004 J. Propul. Power 20 1

    [4]

    Jain A, Anthonysamy S, Ananthasivan K 2010 Thermochim. Acta 500 1

    [5]

    Macek A, Semple J M 1969 Combust. Sci. Technol. 1 181

    [6]

    Ao W, Yang W J, Han Z J, Liu J Z, Zhou J H, Cen K F 2012 J. Solid Rocket Technol. 35 361 (in Chinese) [敖文, 杨卫娟, 韩志江, 刘建忠, 周俊虎, 岑可法 2012 固体火箭技术 35 361]

    [7]

    King M K 1982 J. Spacecraft Rockets 19 294

    [8]

    Young G, Sullivan K, Zachariah M R, Yu K 2009 Combust. Flame 156 322

    [9]

    Wang Y H, Li B X, Hu S Q 2004 Chin. J. Explos. Propel. 27 44 (in Chinese) [王英红, 李葆萱, 胡松起 2004 火炸药学报 2004 27 44]

    [10]

    Liu J, Li J X, Feng X P, Zheng Y 2011 J. Propulsion Technol. 32 355 (in Chinese) [刘杰, 李进贤, 冯喜平, 郑亚 2011 推进技术 32 355]

    [11]

    Hu J X 2006 Ph. D Dissertation (Changsha: National University of Defense Technology) (in Chinese) [胡建新 2006 博士学位论文(长沙: 国防科技大学)]

    [12]

    Ju Y 2014 Adv. Mech. 44 20

    [13]

    Inomata T, Okazaki S, Moriwaki T, Suzuki M 1983 Combust. Flame 50 361

    [14]

    Starikovskaya S M, Kukaev E N, Kuksin A Y 2004 Combust. Flame 139 177

    [15]

    Starikovskaia S M, Kosarev I N, Popov N A, Starikovskii A Yu 2009 40th AIAA Plasmadynamics and Lasers Conference San Antonio, June 22-25, 2009 p3595

    [16]

    Starikovskiy A 2012 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Nashville Tennessee, 2012 p244

    [17]

    Andrey S, Nickolay A 2013 Prog. Energ. Combust. 39 61

    [18]

    Sun W, Won S H, Ombrello T 2013 P. Combust. Inst. 34 847

    [19]

    Aleksandrov N L, Kindysheva S V, Kochetov I V 2014 Plasma Sources Sci. T. 23 015017

    [20]

    Zhang P, Hong Y J, Sheng S Y, Ding X Y 2014 High Volt. Engin. 40 2125 (in Chinese) [张鹏, 洪延姬, 沈双晏, 丁小雨 2014 高电压技术 40 2125]

    [21]

    Lan Y D 2011 Ph. D Dissertation (Xian: Air Force Engineering University) (in Chinese) [兰宇丹 2011 博士学位论文(西安: 空军工程大学)]

    [22]

    Xie Y S, Zhang X B, Yuan Y X, Zhou Y 2003 J. Propulsion Technol. 24 275 (in Chinese) [谢玉树, 张小兵, 袁亚雄, 周跃 2003 推进技术 24 275]

    [23]

    Hu J X, Xia Z X, Zhang W H, Fang Z B, Wang D Q, Huang L Y 2012 Int. J. Eng. Sci. 2012 160620

    [24]

    Hussmann B, Pfitzner M 2010 Combust. Flame 157 803

    [25]

    Hussmann B, Pfitzner M 2010 Combust. Flame 157 822

    [26]

    Shumlak U, Loverich J 2003 J. Comput. Phys. 187 620

  • [1] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [2] Zhao Chong-Xiao, Qi Liang-Wen, Yan Hui-Jie, Wang Ting-Ting, Ren Chun-Sheng. Influence of discharge parameters on pulsed discharge of coaxial gun in deflagration mode. Acta Physica Sinica, 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [3] Li Yang, Su Ting, Liang Hong, Xu Jiang-Rong. Phase field lattice Boltzmann model for two-phase flow coupled with additional interfacial force. Acta Physica Sinica, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [4] Wang Lin, Xia Zhi-Xun, Luo Zhen-Bing, Zhou Yan, Zhang Yu. Experimental study on the characteristics of a two-electrode plasma synthetic jet actuator. Acta Physica Sinica, 2014, 63(19): 194702. doi: 10.7498/aps.63.194702
    [5] Gao Zhong-Ke, Hu Li-Dan, Zhou Ting-Ting, Jin Ning-De. Limited penetrable visibility graph from two-phase flow for investigating flow pattern dynamics. Acta Physica Sinica, 2013, 62(11): 110507. doi: 10.7498/aps.62.110507
    [6] Fang Chuan-Bo, Xia Zhi-Xun, Xiao Yun-Lei, Hu Jian-Xin, Liu Dao-Ping. Study of ignition process of boron particle with considering Stefan flow effects. Acta Physica Sinica, 2013, 62(16): 164702. doi: 10.7498/aps.62.164702
    [7] Liu Hui-Ping, Zou Xiu, Zou Bin-Yan, Qiu Ming-Hui. Bohm criterion for an electronegative magnetized plasma sheath. Acta Physica Sinica, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [8] Wang Pei, Sun Hai-Quan, Shao Jian-Li, Qin Cheng-Sen, Li Xin-Zhu. Numerical simulation on mixing process of ejecta and gas. Acta Physica Sinica, 2012, 61(23): 234703. doi: 10.7498/aps.61.234703
    [9] Zhao Jun-Ying, Jin Ning-De. Dynamic characteristics of multivariate graph centrobaric trajectory in phase space of two-phase flow. Acta Physica Sinica, 2012, 61(9): 094701. doi: 10.7498/aps.61.094701
    [10] Chen Gao-Fei, Gong Mao-Qiong, Shen Jun, Zou Xin, Wu Jian-Feng. Two-phase frictional pressure drop of 1,1-difluoroethane in a horizontal tube. Acta Physica Sinica, 2010, 59(12): 8669-8675. doi: 10.7498/aps.59.8669
    [11] Lu He-Lin, Wang Shun-Jin. Zonal flow dynamics in background of ion-temperature-gradient mode turbulence based on minimal freedom model. Acta Physica Sinica, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [12] Dong Fang, Jin Ning-De, Zong Yan-Bo, Wang Zhen-Ya. Multi-scale recurrence quantification analysis of the dynamic characteristics of two phase flow pattern. Acta Physica Sinica, 2008, 57(10): 6145-6154. doi: 10.7498/aps.57.6145
    [13] Tian Yang-Meng, Wang Cai-Xia, Jiang Ming, Cheng Xin-Lu, Yang Xiang-Dong. State equation of inert plasma. Acta Physica Sinica, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [14] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Numerical research on intense pulsed ion beam ablation plasma expansion into ambient gases. Acta Physica Sinica, 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [15] Zhang Li, Li Xiang-Dong, Jiang Xin-Ge. Plasma effect on the Kα group emission of He-like neon. Acta Physica Sinica, 2006, 55(9): 4501-4505. doi: 10.7498/aps.55.4501
    [16] Xie Hong-Quan, Liu Pu-Kun. Dispersion equation of a helical slow wave structure filled with magnetized plasma. Acta Physica Sinica, 2006, 55(5): 2397-2402. doi: 10.7498/aps.55.2397
    [17] Huang Qin-Chao, Luo Jia-Rong, Wang Hua-Zhong, Li Chong. Quick identification of EAST plasma discharge shape. Acta Physica Sinica, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [18] Yang Hang-Sheng. Surface growth mechanism of cubic boron nitride thin films prepared by plasma-enhanced chemical vapor deposition. Acta Physica Sinica, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [19] Liu Shao-Bin, Zhu Chuan-Xi, Yuan Nai-Chang. FDTD simulation for plasma photonic crystals. Acta Physica Sinica, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [20] Mu Zong-Xin, Li Guo-Qing, Qin Fu-Wen, Huang Kai-Yu, Che De-Liang. The model of the magnetic mirror effect in the unbalanced magnetron sputtering ion beams. Acta Physica Sinica, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
Metrics
  • Abstract views:  6716
  • PDF Downloads:  147
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2014
  • Accepted Date:  11 May 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map