-
LiF is often used as a window in laser-driven shock experiments, which can transmit and reflect visible probe laser. Researches of LiF transparency almost focus on its optical reflectivity compressed by strong shock, but there is almost no research on its optical transmissivity compressed by weak shock. In order to study the optical transmissivity of LiF, the quasi-isentropic compression experiment is carried out on the ShenGuang-III prototype laser facility, in which the velocity interferometer system for any reflector is used to diagnose the optical reflectivity of the quasi-isentropic compression sample CH/Al/LiF. The experimental results indicate that the velocity interferometer fringes are missing in the late stage of this experiment. The probe laser should penetrate LiF before it hits the rear surface of aluminum and the laser reflected by aluminum should penetrate LiF before it is collected by the velocity interferometer system for any reflector. Therefore, the reflectivity diagnosed by the velocity interferometer system for any reflector is the product of the optical reflectivity of aluminum and the optical transmissivity of LiF under the experimental condition. However, there is no research about the optical transmissivity model of thick LiF compressed by laser-driven shock. In this paper, we develop a transmissivity model for transparent window LiF and simulate the optical reflectivity of sample CH/Al/LiF. Firstly, we simulate the temperature and density of the sample by the code for one-dimensional multigroup radiation hydrodynamics (MULTI-1D). Then, based on the resulting temperature and density, we simulate the optical reflectivity of the sample by using the optical reflectivity model of aluminum and the optical transmissivity model of LiF. Without considering the transparency of LiF, the simulated result indicates that there is no signal missing in the late stage, which is different from the experimental result. By considering the transparency of LiF, the simulated result is in good agreement with the experimental result. The simulated result indicates that the formation of the strong shock, because of the later shock's catching up with the early one, obviously reduces the optical transparency of LiF and finally causes the velocity interferometer fringes to disappear. The simulated result also indicates that the energy gap of LiF calculated from density-functional theory is 1-2 eV. In this experiment, when LiF becomes opaque, its temperature is 1 eV and its pressure is 2-3 Mbar.
-
Keywords:
- quai-isentropic compression /
- LiF /
- energy gap /
- optical transparency
[1] Loubeyre P, Brygoo S, Eggert J, Celliers P M, Spaulding D K, Rygg J R, Boehly T R, Collins G W, Jeanloz R 2012 Phys. Rev. B 86 144115
[2] Renaudin P, Blancard C, Clérouin J, Faussurier G, Noiret P, Recoules V 2003 Phys. Rev. Lett. 91 075002
[3] Bridgman P W 1946 Rev. Mod. Phys. 18 1
[4] Jing Q M, Wu Q, Liu L, Bi Y, Zhang Y, Liu S G, Xu J A 2012 Chin. Phys. B 21 106201
[5] Al'Tshuler L V, Bakanova A A, Trunin R F 1962 Sov. Phys. JETP 15 65
[6] Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101
[7] Nellis W J, Moriarty J A, Mitchell A C, Ross M, Dandrea R G, Ashcroft N W, Holmes N C, Gathers G R 1988 Phys. Rev. Lett. 60 1414
[8] Gu Y, Ni Y L, Wang Y G, Mao C S, Wu F C, Wu J, Zhu J, Wan B G 1988 Acta Phys. Sin. 37 1690 (in Chinese) [顾援, 倪元龙, 王勇刚, 毛楚生, 吴逢春, 吴江, 朱俭, 万炳根 1988 37 1690]
[9] Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese) [王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 63 185202]
[10] Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Eggert J H 2005 Phys. Plasmas 12 092703
[11] Mančić A 2010 J. Phys.: Conf. Ser. 257 012009
[12] Ping Y, Coppari F, Hicks D G, Yaakobi B, Fratanduono D E, Hamel S, Eggert J H, Rygg J R, Smith R F, Swift D C, Braun D G, Boehly T R, Collins G W 2013 Phys. Rev. Lett. 111 065501
[13] Barrios M A, Hicks D G, Boehly T R, Fratanduono D E, Eggert J H, Celliers P M, Collins G W, Meyerhofer D D 2010 Phys. Plasmas 17 056307
[14] Basko M, Löwer T, Kondrashov V N, Kendl A R S, Meyer-ter-Vehn J 1997 Phys. Rev. E 56 1019
[15] Huser G, Koenig M, Benuzzi-Mounaix A, Henry E, Vinci T, Faral B, Tomasini M, Telaro B, Batani D 2005 Phys. Plasmas 12 060701
[16] Zhou X M, Wang X S, Li S N, Li J, Li J B, Jing F Q 2007 Acta Phys. Sin. 56 4965 (in Chinese) [周显明, 汪小松, 李赛男, 李俊, 李加波, 经福谦 2007 56 4965]
[17] Knudson M D, Hanson D L, Bailey J E, Hall C A, Asay J R 2003 Phys. Rev. Lett. 90 035505
[18] Hicks D G, Celliers P M, Collins G W, Eggert J H, Moon S J 2003 Phys. Rev. Lett. 91 035502
[19] Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521
[20] Clérouin J, Laudernet Y, Recoules V, Mazevet S 2005 Phys. Rev. B 72 155122
[21] Sajid A, Murtaza G, Reshak A H 2013 Mod. Phys. Lett. B 27 1350061
[22] Xue Q, Wang Z, Jiang S, Wang F, Ye X, Liu J 2014 Phys. Plasmas 21 072709
[23] Wang F, Peng X S, Zhang R, Xu T, Wei H Y, Liu S Y, Wang J J, Li M Z, Jiang X H, Ding Y K 2013 High Power Laser and Particle Beams 25 3158 (in Chinese) [王峰, 彭晓世, 张锐, 徐涛, 魏惠月, 刘慎业, 王建军, 李明中, 蒋小华, 丁永坤 2013 强激光与粒子束 25 3158]
[24] Benuzzi A, Koenig M, Faral B, Krishnan J, Pisani F, Batani D, Bossi S, Beretta D, Hall T, Ellwi S, Huller S, Honrubia J, Grandjouan N 1998 Phys. Plasmas 5 2410
[25] Holm B, Ahuja R, Yourdshahyan Y, Johansson B, Lundqvist B I 1999 Phys. Rev. B 59 12777
[26] Wise J L, Chhabildas L C 1986 Shock Wave in Condensed Matter (edited by GuPta Y M) (New York: Plenum) p441
[27] Furnish M D, Chhabildas L C, Reinhart W D 1999 Int. J. Impact Eng. 23 261
[28] LaLone B M, Fat'yanov O V, Asay J R, Gupta Y M 2008 J. Appl. Phys. 103 093505
-
[1] Loubeyre P, Brygoo S, Eggert J, Celliers P M, Spaulding D K, Rygg J R, Boehly T R, Collins G W, Jeanloz R 2012 Phys. Rev. B 86 144115
[2] Renaudin P, Blancard C, Clérouin J, Faussurier G, Noiret P, Recoules V 2003 Phys. Rev. Lett. 91 075002
[3] Bridgman P W 1946 Rev. Mod. Phys. 18 1
[4] Jing Q M, Wu Q, Liu L, Bi Y, Zhang Y, Liu S G, Xu J A 2012 Chin. Phys. B 21 106201
[5] Al'Tshuler L V, Bakanova A A, Trunin R F 1962 Sov. Phys. JETP 15 65
[6] Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101
[7] Nellis W J, Moriarty J A, Mitchell A C, Ross M, Dandrea R G, Ashcroft N W, Holmes N C, Gathers G R 1988 Phys. Rev. Lett. 60 1414
[8] Gu Y, Ni Y L, Wang Y G, Mao C S, Wu F C, Wu J, Zhu J, Wan B G 1988 Acta Phys. Sin. 37 1690 (in Chinese) [顾援, 倪元龙, 王勇刚, 毛楚生, 吴逢春, 吴江, 朱俭, 万炳根 1988 37 1690]
[9] Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese) [王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 63 185202]
[10] Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Eggert J H 2005 Phys. Plasmas 12 092703
[11] Mančić A 2010 J. Phys.: Conf. Ser. 257 012009
[12] Ping Y, Coppari F, Hicks D G, Yaakobi B, Fratanduono D E, Hamel S, Eggert J H, Rygg J R, Smith R F, Swift D C, Braun D G, Boehly T R, Collins G W 2013 Phys. Rev. Lett. 111 065501
[13] Barrios M A, Hicks D G, Boehly T R, Fratanduono D E, Eggert J H, Celliers P M, Collins G W, Meyerhofer D D 2010 Phys. Plasmas 17 056307
[14] Basko M, Löwer T, Kondrashov V N, Kendl A R S, Meyer-ter-Vehn J 1997 Phys. Rev. E 56 1019
[15] Huser G, Koenig M, Benuzzi-Mounaix A, Henry E, Vinci T, Faral B, Tomasini M, Telaro B, Batani D 2005 Phys. Plasmas 12 060701
[16] Zhou X M, Wang X S, Li S N, Li J, Li J B, Jing F Q 2007 Acta Phys. Sin. 56 4965 (in Chinese) [周显明, 汪小松, 李赛男, 李俊, 李加波, 经福谦 2007 56 4965]
[17] Knudson M D, Hanson D L, Bailey J E, Hall C A, Asay J R 2003 Phys. Rev. Lett. 90 035505
[18] Hicks D G, Celliers P M, Collins G W, Eggert J H, Moon S J 2003 Phys. Rev. Lett. 91 035502
[19] Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521
[20] Clérouin J, Laudernet Y, Recoules V, Mazevet S 2005 Phys. Rev. B 72 155122
[21] Sajid A, Murtaza G, Reshak A H 2013 Mod. Phys. Lett. B 27 1350061
[22] Xue Q, Wang Z, Jiang S, Wang F, Ye X, Liu J 2014 Phys. Plasmas 21 072709
[23] Wang F, Peng X S, Zhang R, Xu T, Wei H Y, Liu S Y, Wang J J, Li M Z, Jiang X H, Ding Y K 2013 High Power Laser and Particle Beams 25 3158 (in Chinese) [王峰, 彭晓世, 张锐, 徐涛, 魏惠月, 刘慎业, 王建军, 李明中, 蒋小华, 丁永坤 2013 强激光与粒子束 25 3158]
[24] Benuzzi A, Koenig M, Faral B, Krishnan J, Pisani F, Batani D, Bossi S, Beretta D, Hall T, Ellwi S, Huller S, Honrubia J, Grandjouan N 1998 Phys. Plasmas 5 2410
[25] Holm B, Ahuja R, Yourdshahyan Y, Johansson B, Lundqvist B I 1999 Phys. Rev. B 59 12777
[26] Wise J L, Chhabildas L C 1986 Shock Wave in Condensed Matter (edited by GuPta Y M) (New York: Plenum) p441
[27] Furnish M D, Chhabildas L C, Reinhart W D 1999 Int. J. Impact Eng. 23 261
[28] LaLone B M, Fat'yanov O V, Asay J R, Gupta Y M 2008 J. Appl. Phys. 103 093505
Catalog
Metrics
- Abstract views: 6233
- PDF Downloads: 154
- Cited By: 0