-
Rossby waves are intrinsic in the large-scale systems of fluids, so they are the most important waves in the atmosphere and ocean. Theory and observation show that their basic characteristic is to satisfy the quasi-geostrophic and quasi-static equilibrium approximations. In stratified fluids, we discuss the long waves in a homogenous atmosphere and obtain the KdV equation, but the analysis is limited to the case that the velocity shear is small compared with a basic uniform zonal motion, and it gives no insight pertaining to the kinds of stream-line-flow patterns accompanying these waves. Here, the -plane approximation f= f0+ 0 y (0 is a constant) is extended into f= f0+ (y) y, which includes a nonlinear function (y) taking the place of in the -plane approximation. Such an approximation can depict more precisely the motion of the atmosphere and ocean, especially in the middle and high latitude regions. It generalizes the theory developed by Helfrich and Pedlosky for time-dependent coherent structures in a marginally stable zonal flow by including forcing. Such forcing could be due to topography or external source. We take the basic flow to be a shear and the Visl-Brunt frequency N a function of variable z. For the stratified fluids, based on the lower boundary with external heating source and topography, as well as the quasi-geostrophic potential vorticity equation with external heating source, an inhomogeneous nonlinear Schrdinger equation (including topographic forcing and an external heating source) is derived by using the perturbation method and stretching transforms of time and space. It is found that the external heating source, effect and topography effect are the important factors that could induce the nonlinear solitary Rossby by inspection of the evolution of the amplitude of Rossby waves. On the assumption that nonlinear topographic effects and the dissipation of external heating source are balanced, an inhomogenous equation in which the coefficients depend on (y), u(y,z) and N(z) is derived. Results show that the topography, external heating source and Rossby waves will interact with a basic stream function that has a shear. In stratified fluids, the inhomogeneous nonlinear Schrdinger equation is obtained for describing the evolution of the amplitude of solitary Rossby envelop solitary waves as the change of Rossby parameter (y) with latitude y, topographic forcing and the external heating source.
-
Keywords:
- Rossby waves /
- external heating source /
- topography /
- Schr /
- dinger equation
[1] Maxworthy T, Redekopp L G 1976 Nature 260 509
[2] Maxworthy T, Redekopp L G, Weidman P D 1978 Icarus 33 388
[3] Long R R 1964 J. Atmos. Sci. 21 197
[4] Benney D J 1966 J. Math. Phys. 45 52
[5] Ripa P 1982 J. Phys. Oceanogr. 12 97
[6] Redekopp L G 1977 J. Fluid Mesh. 82 725
[7] Redkopp L G, Weidman P D 1978 J. Atmos. Sci. 35 790
[8] Wadati M 1973 J. Phy. Soc. Japan 34 1289
[9] Tan B K, Wu R S 1995 Sci. Atmos. Sin. 19 299 (in Chinese) [谭本馗, 伍荣生 1995 大气科学 19 299]
[10] Song J, Yang L G 2011 Acta Phys. Sin. 60 104701(in Chinese) [宋健, 杨联贵 2011 60 104701]
[11] Song J, Yang L G 2012 Acta Phys. Sin. 61 210510(in Chinese) [宋健, 杨联贵 2012 61 210510]
[12] Maslowe S A, Redekopp L G 1980 J. Fluid Mech. 101 321
[13] Ono H 1975 J. Phys. Soc. Japan 39 1082
[14] Ono H 1982 J. Phys. Soc. Japan 50 2757
[15] Body J P 1980 J. Phys. Oceanogr. 10 1699
[16] Body J P 1983 J. Phys. Oceanogr. 13 428
[17] Yu X, Zhao Q 2009 Chin. Phys. Lett. 26 039201
[18] Wang P, Dai X G 2005 Acta. Phys. Sin. 54 4961(in Chinese) [汪萍, 戴新刚 2005 54 4961]
[19] Pedlosky J 1979 Geophysical Fluid Dynamics (Berlin and New York:: Springer Velag) pp604608
[20] Meng Lu, Lu K L 2000 Chin. J. Compu. Phys. 19 349
[21] Tan B K, Wu R S 1993 Sci. in China B 23 437(in Chinese) [谭本馗, 伍荣生 1993 中国科学B辑 23 437]
[22] Domaracki A, Loesch A Z 1977 J. Atmos Sci. 34 486
[23] Jeffrey A, Kawahara T 1982 Asymptotic Methods in Nonlinear Waves Theory (Melbourne: Pitman Publishing Inc.) pp256-266
-
[1] Maxworthy T, Redekopp L G 1976 Nature 260 509
[2] Maxworthy T, Redekopp L G, Weidman P D 1978 Icarus 33 388
[3] Long R R 1964 J. Atmos. Sci. 21 197
[4] Benney D J 1966 J. Math. Phys. 45 52
[5] Ripa P 1982 J. Phys. Oceanogr. 12 97
[6] Redekopp L G 1977 J. Fluid Mesh. 82 725
[7] Redkopp L G, Weidman P D 1978 J. Atmos. Sci. 35 790
[8] Wadati M 1973 J. Phy. Soc. Japan 34 1289
[9] Tan B K, Wu R S 1995 Sci. Atmos. Sin. 19 299 (in Chinese) [谭本馗, 伍荣生 1995 大气科学 19 299]
[10] Song J, Yang L G 2011 Acta Phys. Sin. 60 104701(in Chinese) [宋健, 杨联贵 2011 60 104701]
[11] Song J, Yang L G 2012 Acta Phys. Sin. 61 210510(in Chinese) [宋健, 杨联贵 2012 61 210510]
[12] Maslowe S A, Redekopp L G 1980 J. Fluid Mech. 101 321
[13] Ono H 1975 J. Phys. Soc. Japan 39 1082
[14] Ono H 1982 J. Phys. Soc. Japan 50 2757
[15] Body J P 1980 J. Phys. Oceanogr. 10 1699
[16] Body J P 1983 J. Phys. Oceanogr. 13 428
[17] Yu X, Zhao Q 2009 Chin. Phys. Lett. 26 039201
[18] Wang P, Dai X G 2005 Acta. Phys. Sin. 54 4961(in Chinese) [汪萍, 戴新刚 2005 54 4961]
[19] Pedlosky J 1979 Geophysical Fluid Dynamics (Berlin and New York:: Springer Velag) pp604608
[20] Meng Lu, Lu K L 2000 Chin. J. Compu. Phys. 19 349
[21] Tan B K, Wu R S 1993 Sci. in China B 23 437(in Chinese) [谭本馗, 伍荣生 1993 中国科学B辑 23 437]
[22] Domaracki A, Loesch A Z 1977 J. Atmos Sci. 34 486
[23] Jeffrey A, Kawahara T 1982 Asymptotic Methods in Nonlinear Waves Theory (Melbourne: Pitman Publishing Inc.) pp256-266
Catalog
Metrics
- Abstract views: 5575
- PDF Downloads: 184
- Cited By: 0