搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层结流体中具有β效应与地形效应的强迫Rossby孤立波

宋健 杨联贵

引用本文:
Citation:

层结流体中具有β效应与地形效应的强迫Rossby孤立波

宋健, 杨联贵

Force solitary Rossby waves with beta effect and topography effect in stratified flows

Song Jian, Yang Lian-Gui
PDF
导出引用
  • 层结流体中,从绝热位涡的扰动方程出发采用摄动方法和时空伸长变换推导了具有β效应和地形效应的强迫Rossby孤立波方程,得到孤立Rossby波振幅的演变满足带有地形强迫的非齐次mKdV方程的结论. 通过分析孤立Rossby波振幅的演变,即使基本气流没有切变,仍可能激发出Rossby孤立波.指出了科氏力效应、地形效应以及Vaisala-Brunt频率都是诱导Rossby孤立波产生的重要因素,说明了在地形强迫效应和非线性作用相平衡的假定下,Rossby孤立波振幅的演变满足非齐次的mKdV方程.讨论
    For the stratified fluids, based on the quasi-geostrophic potential vorticity equation, an inhomogeneous modified Korteweg-de Vried (mKdV) equation including topographic forcing is derived by employing the perturbation method and stretching transforms of time and space. With inspection of the evolution of the amplitude of Rossby waves, it is found that Coridis effect, topography effect and Vaisala-Brunt frequency are the important factors, that induce the solitary Rossby wave, and it is induced even though the basic stream function has not a shear. Assuming that there is a balance between nonlinear and topographic effects, an inhomogeneous mKdV equation is derived, the results show that the topography and Rossby waves interact in the stratified flows. The inhomogeneous mKdV equation describing the evolution of the amplitude of solitary Rossby waves as a function of the change of Rossby parameter β(y) with latitude y, topographic forcing and the Vaisala-Brunt frequency is obtained.
    • 基金项目: 内蒙古教育厅基金(批准号:NJZY08005,NJ09066),内蒙古自然科学基金(批准号:2009ZD01)和内蒙古工业大学科学研究项目(批准号:X200933)资助的课题.
    [1]

    [1]Long R 1964 J. Atmos. Sci. 21 197

    [2]

    [2]Benney D J 1966 J. Math. Phys. 45 52

    [3]

    [3]Larsen L N 1965 J. Atmos. Sci. 22 222

    [4]

    [4]Clarke A 1971 Geophys. Fluid Dyn. 2 343

    [5]

    [5]Redekopp L G 1977 J. Fluid Mech. 82 725

    [6]

    [6]Wadati M 1973 J. Phy. Soc. Japan 34 1289

    [7]

    [7]Redekopp L G, Weidman P D 1978 J. Atmos. Sci. 35 790

    [8]

    [8]Maslowe S A, Redekopp L G 1980 J. Fluid Mech. 101 321

    [9]

    [9]Chraney J G, Straus D M 1980 J. Atmos. Sci. 37 1157

    [10]

    ]Feng G L, Dong W J, Jia X J, Cao H X 2002 Acta Phys. Sin. 51 1181 (in Chinese) [封国林、 董文杰、 贾晓静、 曹鸿兴 2002 51 1181]

    [11]

    ]Body J P 1980 J. Phys. Oceanogr. 10 1699

    [12]

    ]Body J P 1983 J. Phys. Oceanogr. 13 428

    [13]

    ]Liu S K, Tan B K 1992 Appl. Math. Mech. 13 35 (in Chinese) [刘式适、 谭本馗 1922 应用数学和力学 13 35]

    [14]

    ]Luo D H 1991 Acta Meteor. Sin. 5 587

    [15]

    ]Luo D H 1995 J. Appl. Meteor. 6 220 (in Chinese) [罗德海 1995 应用气象学报 6 220]

    [16]

    ]Zhao Q 1997 J. Trop. Meteor. 13 140 (in Chinese)[赵强 1997 热带气象学报 13 140]

    [17]

    ]Lv K L, Jiang H S 1996 Acta. Meteor. Sin. 54 2597 (in Chinese)[吕克利、 蒋后硕 1996 气象学报 54 2597]

    [18]

    ]Da C J, Chou J F 2008 Acta. Phys. Sin. 57 2595 (in Chinese) [达朝究、 丑纪范 2008 57 2595]

    [19]

    ]Song J, Yang L G, Da C J Zhang H Q 2009 Atmos. Ocea. Sci. Letters 2 18

    [20]

    ]Song J, Yang L G 2009 Chin. Phys. B 18 2873

    [21]

    ]Song J Yang L G 2009 Pro. Geophy. (accepted)

    [22]

    ]Zhang L, Zhang L F, Wu H Y, Li G 2010 Acta. Phys. Sin. 59 44 ( in Chinese)[张亮、 张立凤、 吴海燕、 李刚 2010 59 44]

    [23]

    ]Wang P, Dai X G 2005 Acta. Phys. Sin. 54 4961 (in Chinese)[汪萍、 戴新刚 2005 54 4961]

    [24]

    ]Fan E G, Zhang H Q 1998 Acta. Phys. Sin. 47 353 (in Chinese)[范恩贵、 张鸿庆 1998 47 353]

    [25]

    ]Fan E G, Zhang H Q 2000 Acta. Phys. Sin. 49 1409 (in Chinese)[范恩贵、 张鸿庆 2000 49 1409 ]

    [26]

    ]Mao J J, Yang J R 2005 Acta. Phys. Sin. 54 4999 (in Chinese)[毛杰健、 杨建荣 2005 54 4999]

    [27]

    ]Zhu H P, Zheng C L 2006 Acta. Phys. Sin. 55 4999 (in Chinese) [朱海平、 郑春龙 2006 55 4999]

    [28]

    ] Mo J Q, Chen X F, Zhang W J 2009 Acta. Phys. Sin. 58 7397 (in Chinese) [莫嘉琪、陈贤峰、 张伟江 2009 58 7397]

    [29]

    ]Mao J J, Yang J R 2007 Acta. Phys. Sin. 56 5049 (in Chinese)[毛杰健、 杨建荣 2007 56 5049]

    [30]

    ]Liu S D ,Fu Z T, Liu S K, Zhao Q 2002 Acta. Phys. Sin. 51 718 (in Chinese) [刘式达、 付遵涛、 刘式适、 赵强 2002 51 718]

    [31]

    ]Liu S K ,Fu Z T, Liu S D, Zhao Q 2002 Acta. Phys. Sin. 51 1923 (in Chinese) [刘式适、 付遵涛、 刘式达、 赵强 2002 51 1923]

    [32]

    ]Patione A, Warn T 1982 J. Atmos. Sci. 39 1018

    [33]

    ]Warn T, Brasnett B 1982 J. Atmos. Sci. 40 28

    [34]

    ]Jeffrey A, Kawahara T 1982 Asymptotic Methods in Nonlinear Waves Theory (Melbourne: Pitman Publishing Inc.)p256—266

  • [1]

    [1]Long R 1964 J. Atmos. Sci. 21 197

    [2]

    [2]Benney D J 1966 J. Math. Phys. 45 52

    [3]

    [3]Larsen L N 1965 J. Atmos. Sci. 22 222

    [4]

    [4]Clarke A 1971 Geophys. Fluid Dyn. 2 343

    [5]

    [5]Redekopp L G 1977 J. Fluid Mech. 82 725

    [6]

    [6]Wadati M 1973 J. Phy. Soc. Japan 34 1289

    [7]

    [7]Redekopp L G, Weidman P D 1978 J. Atmos. Sci. 35 790

    [8]

    [8]Maslowe S A, Redekopp L G 1980 J. Fluid Mech. 101 321

    [9]

    [9]Chraney J G, Straus D M 1980 J. Atmos. Sci. 37 1157

    [10]

    ]Feng G L, Dong W J, Jia X J, Cao H X 2002 Acta Phys. Sin. 51 1181 (in Chinese) [封国林、 董文杰、 贾晓静、 曹鸿兴 2002 51 1181]

    [11]

    ]Body J P 1980 J. Phys. Oceanogr. 10 1699

    [12]

    ]Body J P 1983 J. Phys. Oceanogr. 13 428

    [13]

    ]Liu S K, Tan B K 1992 Appl. Math. Mech. 13 35 (in Chinese) [刘式适、 谭本馗 1922 应用数学和力学 13 35]

    [14]

    ]Luo D H 1991 Acta Meteor. Sin. 5 587

    [15]

    ]Luo D H 1995 J. Appl. Meteor. 6 220 (in Chinese) [罗德海 1995 应用气象学报 6 220]

    [16]

    ]Zhao Q 1997 J. Trop. Meteor. 13 140 (in Chinese)[赵强 1997 热带气象学报 13 140]

    [17]

    ]Lv K L, Jiang H S 1996 Acta. Meteor. Sin. 54 2597 (in Chinese)[吕克利、 蒋后硕 1996 气象学报 54 2597]

    [18]

    ]Da C J, Chou J F 2008 Acta. Phys. Sin. 57 2595 (in Chinese) [达朝究、 丑纪范 2008 57 2595]

    [19]

    ]Song J, Yang L G, Da C J Zhang H Q 2009 Atmos. Ocea. Sci. Letters 2 18

    [20]

    ]Song J, Yang L G 2009 Chin. Phys. B 18 2873

    [21]

    ]Song J Yang L G 2009 Pro. Geophy. (accepted)

    [22]

    ]Zhang L, Zhang L F, Wu H Y, Li G 2010 Acta. Phys. Sin. 59 44 ( in Chinese)[张亮、 张立凤、 吴海燕、 李刚 2010 59 44]

    [23]

    ]Wang P, Dai X G 2005 Acta. Phys. Sin. 54 4961 (in Chinese)[汪萍、 戴新刚 2005 54 4961]

    [24]

    ]Fan E G, Zhang H Q 1998 Acta. Phys. Sin. 47 353 (in Chinese)[范恩贵、 张鸿庆 1998 47 353]

    [25]

    ]Fan E G, Zhang H Q 2000 Acta. Phys. Sin. 49 1409 (in Chinese)[范恩贵、 张鸿庆 2000 49 1409 ]

    [26]

    ]Mao J J, Yang J R 2005 Acta. Phys. Sin. 54 4999 (in Chinese)[毛杰健、 杨建荣 2005 54 4999]

    [27]

    ]Zhu H P, Zheng C L 2006 Acta. Phys. Sin. 55 4999 (in Chinese) [朱海平、 郑春龙 2006 55 4999]

    [28]

    ] Mo J Q, Chen X F, Zhang W J 2009 Acta. Phys. Sin. 58 7397 (in Chinese) [莫嘉琪、陈贤峰、 张伟江 2009 58 7397]

    [29]

    ]Mao J J, Yang J R 2007 Acta. Phys. Sin. 56 5049 (in Chinese)[毛杰健、 杨建荣 2007 56 5049]

    [30]

    ]Liu S D ,Fu Z T, Liu S K, Zhao Q 2002 Acta. Phys. Sin. 51 718 (in Chinese) [刘式达、 付遵涛、 刘式适、 赵强 2002 51 718]

    [31]

    ]Liu S K ,Fu Z T, Liu S D, Zhao Q 2002 Acta. Phys. Sin. 51 1923 (in Chinese) [刘式适、 付遵涛、 刘式达、 赵强 2002 51 1923]

    [32]

    ]Patione A, Warn T 1982 J. Atmos. Sci. 39 1018

    [33]

    ]Warn T, Brasnett B 1982 J. Atmos. Sci. 40 28

    [34]

    ]Jeffrey A, Kawahara T 1982 Asymptotic Methods in Nonlinear Waves Theory (Melbourne: Pitman Publishing Inc.)p256—266

  • [1] 吴朝俊, 方礼熠, 杨宁宁. 含有偏置电压源的非齐次分数阶忆阻混沌电路动力学分析与实验研究.  , 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] 李静和, 何展翔, 孟淑君, 杨俊, 李文杰, 廖小倩. 三维地形频率域井筒电磁场区域积分方程法模拟.  , 2019, 68(14): 140202. doi: 10.7498/aps.68.20190330
    [3] 付元光, 邓力, 李刚. 非齐次燃耗方程数值解法.  , 2018, 67(17): 172802. doi: 10.7498/aps.67.20172650
    [4] 马艳, 林书玉, 徐洁, 唐一璠. 非球形效应对强声场中次Bjerknes力的影响.  , 2017, 66(1): 014302. doi: 10.7498/aps.66.014302
    [5] 李少峰, 杨联贵, 宋健. 层结流体中在热外源和效应地形效应作用下的非线性Rossby孤立波和非齐次Schrdinger方程.  , 2015, 64(19): 199201. doi: 10.7498/aps.64.199201
    [6] 杜辉, 魏岗, 张原铭, 徐小辉. 内孤立波沿缓坡地形传播特性的实验研究.  , 2013, 62(6): 064704. doi: 10.7498/aps.62.064704
    [7] 赵龙. 鲁棒惯性地形辅助导航算法研究.  , 2012, 61(10): 104301. doi: 10.7498/aps.61.104301
    [8] 宋健, 刘全生, 杨联贵. 切变纬向流中β效应与缓变地形Rossby波.  , 2012, 61(21): 210510. doi: 10.7498/aps.61.210510
    [9] 宋健, 姜楠, 杨联贵. 切变基本纬向流中β效应的赤道Rossby孤立波包.  , 2011, 60(2): 024701. doi: 10.7498/aps.60.024701
    [10] 宋健, 杨联贵, 刘全生. 强迫耗散与效应地形效应作用下的非线性Rossby波包.  , 2011, 60(10): 104701. doi: 10.7498/aps.60.104701
    [11] 宋健, 赖俊峰. 正压流体中具有β效应与地形效应的强迫Rossby孤立波.  , 2010, 59(7): 4756-4760. doi: 10.7498/aps.59.4756
    [12] 达朝究, 丑纪范. 缓变地形下Rossby波振幅演变满足的带有强迫项的KdV方程.  , 2008, 57(4): 2595-2599. doi: 10.7498/aps.57.2595
    [13] 郑颖辉, 曾志男, 李儒新, 徐至展. 极紫外阿秒脉冲在高次谐波产生过程中引起的非偶极效应.  , 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [14] 韩定安, 郭 弘, 孙 辉, 白艳锋. 三能级Λ-系统探测光的频率调制效应研究.  , 2004, 53(6): 1793-1798. doi: 10.7498/aps.53.1793
    [15] 唐驾时, 刘铸永, 李学平. MKdV方程的拟小波解.  , 2003, 52(3): 522-525. doi: 10.7498/aps.52.522
    [16] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程.  , 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
    [17] 赵永明, 颜家壬. MKdV方程的微扰理论.  , 1999, 48(11): 1976-1982. doi: 10.7498/aps.48.1976
    [18] 范恩贵, 张鸿庆. 非线性孤子方程的齐次平衡法.  , 1998, 47(3): 353-362. doi: 10.7498/aps.47.353
    [19] 陈永清. SPL(2,1)超代数的齐次和非齐次微分实现及其玻色-费密实现.  , 1993, 42(8): 1199-1204. doi: 10.7498/aps.42.1199
    [20] 向渊海, 朱熙文, 邓金泉, 谭永芳. 铷激射器频率的光强和温度效应研究.  , 1991, 40(5): 726-730. doi: 10.7498/aps.40.726
计量
  • 文章访问数:  8262
  • PDF下载量:  681
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-21
  • 修回日期:  2009-08-21
  • 刊出日期:  2010-05-15

/

返回文章
返回
Baidu
map