搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

切变纬向流中β效应与缓变地形Rossby波

宋健 刘全生 杨联贵

引用本文:
Citation:

切变纬向流中β效应与缓变地形Rossby波

宋健, 刘全生, 杨联贵

Beta effect and slowly changing topography Rossby waves in a shear flow

Song Jian, Liu Quan-Sheng, Yang Lian-Gui
PDF
导出引用
  • 正压流体中, 从有外源的准地转位涡方程出发, 采用摄动方法和时空伸长变换推导了具有β效应、缓变地形和外源的Rossby孤立波方程, 得到Rossby波振幅满足带有缓变地形与外源强迫的非齐次 mKdV-Burgers方程的结论. 通过分析孤立Rossby波振幅的演变,指出了β效应、 地形效应以及外源都是诱导Rossby孤立波产生的重要因素; 说明了在缓变地形强迫效应和非线性作用相平衡的假定下, Rossby孤立波振幅的演变满足非齐次mKdV-Burgers方程; 给出在切变基本气流下缓变地形和正压流体中Rossby波的相互作用关系.
    In barotropic fluids, based on the quasi-geostrophic potential vorticity equation, an inhomogeneous mKdV-Burgers equation including slowly changing topography and an external source is derived by employing the perturbation method and stretching transforms of time and space. With the inspection of the evolution of the amplitude of Rossby waves, it is found that beta effect, topography effect, slowly changing topography and an external source are all the important factors, and that the solitary Rossby wave is induced thought the basic stream function has a shear flow . On the assumption that the nonlinear and topographic effects are in balance, an inhomogeneous mKdV-Burgers equation is derived, the results show that the topography and Rossby wave interact in the barotropic flows. The inhomogeneous mKdV-Burgers equation describing the evolution of the amplitude of solitary Rossby wave as the change of Rossby parameter β(y) with latitude y, topographic forcing, slowly changing topography and the external source is obtained.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11202092)和内蒙古自然科学基金(批准号: 2011MS0112, 2012MS0107)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation for Young Scholars of China (Grant No. 11202092) and the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2011MS0112, 2012MS0107).
    [1]

    Long R 1964 J. Atmos. Sci. 21 197

    [2]

    Benney D J 1966 J. Math. Phys. 45 52

    [3]

    Larsen L N 1965 J. Atmos. Sci. 22 222

    [4]

    Clarke A 1971 Geophys. Fluid Dyn. 2 343

    [5]

    Redekopp L G 1977 J. Fluid Mech. 82 725

    [6]

    Wadati M 1973 J. Phys. Soc. Japan 34 1289

    [7]

    Redekopp L G, Weidman P D 1978 J. Atmos. Sci. 35 790

    [8]

    Maslowe S A, Redekopp L G 1980 J. Fluid Mech. 101 321

    [9]

    Chraney J G, Straus D M 1980 J. Atmos. Sci. 37 1157

    [10]

    Feng G L, Dong W J, Jia X J, Cao H X 2002 Acta Phys. Sin. 51 1181 (in Chinese) [封国林, 董文杰, 贾晓静, 曹鸿兴 2002 51 1181]

    [11]

    Body J P 1980 J. Phys. Oceanogr. 10 1699

    [12]

    Body J P 1983 J. Phys. Oceanogr. 13 428

    [13]

    Liu S S, Tan B K 1992 Appl. Math. Mech. 13 35 (in Chinese) [刘式适, 谭本馗 1992 应用数学和力学 13 35]

    [14]

    Luo D H 1991 Acta Meteor. Sin. 5 587

    [15]

    Luo D H 1995 J. Appl. Meteor. 6 220 (in Chinese) [罗德海 1995 应用气象学报 6 220]

    [16]

    Zhao Q 1997 J. Trop. Meteor. 13 140 (in Chinese) [赵强 1997 热带气象学报 13 140]

    [17]

    Meng L, Lü K L 2000 Chin. J. Compu. Phys. 17 259

    [18]

    Zhang L, Zhang L F, Wu H Y, Li G 2010 Acta Phys. Sin. 59 44 (in Chinese) [张亮, 张立凤, 吴海燕, 李刚 2010 59 44]

    [19]

    Wang P, Dai X G 2005 Acta Phys. Sin. 54 4961 (in Chinese) [汪萍, 戴新刚 2005 54 4961]

    [20]

    Fan E G, Zhang H Q 1998 Acta Phys. Sin. 47 353 (in Chinese) [范恩贵, 张鸿庆 1998 47 353]

    [21]

    Liu S D, Fu Z T, Liu S S, Zhao Q 2002 Acta Phys. Sin. 51 718 (in Chinese) [刘式达, 付遵涛, 刘式适, 赵强 2002 51 718]

    [22]

    Liu S S, Fu Z T, Liu S D, Zhao Q 2002 Acta Phys. Sin. 51 1923 (in Chinese) [刘式适, 付遵涛, 刘式达, 赵强 2002 51 1923]

    [23]

    Zhang L H, Yan J, Chang F M 2003 Marine Geol. Lett. 19 14 (in Chinese) [庄丽华, 阎军, 常凤鸣 2003 海洋地质动态 19 14]

    [24]

    Patione A, Warn T 1982 J. Atmos. Sci. 39 1018

    [25]

    Warn T, Brasnett B 1982 J. Atmos. Sci. 40 28

    [26]

    Da C J, Chou J F 2008 Acta Phys. Sin. 57 2595 (in Chinese) [达朝究, 丑纪范 2008 57 2595]

    [27]

    Jeffrey A, Kawahara T 1982 Asymptotic Methods in Nonlinear Waves Theory (Melbourne: Pitman Publishing Inc.) pp256-266

  • [1]

    Long R 1964 J. Atmos. Sci. 21 197

    [2]

    Benney D J 1966 J. Math. Phys. 45 52

    [3]

    Larsen L N 1965 J. Atmos. Sci. 22 222

    [4]

    Clarke A 1971 Geophys. Fluid Dyn. 2 343

    [5]

    Redekopp L G 1977 J. Fluid Mech. 82 725

    [6]

    Wadati M 1973 J. Phys. Soc. Japan 34 1289

    [7]

    Redekopp L G, Weidman P D 1978 J. Atmos. Sci. 35 790

    [8]

    Maslowe S A, Redekopp L G 1980 J. Fluid Mech. 101 321

    [9]

    Chraney J G, Straus D M 1980 J. Atmos. Sci. 37 1157

    [10]

    Feng G L, Dong W J, Jia X J, Cao H X 2002 Acta Phys. Sin. 51 1181 (in Chinese) [封国林, 董文杰, 贾晓静, 曹鸿兴 2002 51 1181]

    [11]

    Body J P 1980 J. Phys. Oceanogr. 10 1699

    [12]

    Body J P 1983 J. Phys. Oceanogr. 13 428

    [13]

    Liu S S, Tan B K 1992 Appl. Math. Mech. 13 35 (in Chinese) [刘式适, 谭本馗 1992 应用数学和力学 13 35]

    [14]

    Luo D H 1991 Acta Meteor. Sin. 5 587

    [15]

    Luo D H 1995 J. Appl. Meteor. 6 220 (in Chinese) [罗德海 1995 应用气象学报 6 220]

    [16]

    Zhao Q 1997 J. Trop. Meteor. 13 140 (in Chinese) [赵强 1997 热带气象学报 13 140]

    [17]

    Meng L, Lü K L 2000 Chin. J. Compu. Phys. 17 259

    [18]

    Zhang L, Zhang L F, Wu H Y, Li G 2010 Acta Phys. Sin. 59 44 (in Chinese) [张亮, 张立凤, 吴海燕, 李刚 2010 59 44]

    [19]

    Wang P, Dai X G 2005 Acta Phys. Sin. 54 4961 (in Chinese) [汪萍, 戴新刚 2005 54 4961]

    [20]

    Fan E G, Zhang H Q 1998 Acta Phys. Sin. 47 353 (in Chinese) [范恩贵, 张鸿庆 1998 47 353]

    [21]

    Liu S D, Fu Z T, Liu S S, Zhao Q 2002 Acta Phys. Sin. 51 718 (in Chinese) [刘式达, 付遵涛, 刘式适, 赵强 2002 51 718]

    [22]

    Liu S S, Fu Z T, Liu S D, Zhao Q 2002 Acta Phys. Sin. 51 1923 (in Chinese) [刘式适, 付遵涛, 刘式达, 赵强 2002 51 1923]

    [23]

    Zhang L H, Yan J, Chang F M 2003 Marine Geol. Lett. 19 14 (in Chinese) [庄丽华, 阎军, 常凤鸣 2003 海洋地质动态 19 14]

    [24]

    Patione A, Warn T 1982 J. Atmos. Sci. 39 1018

    [25]

    Warn T, Brasnett B 1982 J. Atmos. Sci. 40 28

    [26]

    Da C J, Chou J F 2008 Acta Phys. Sin. 57 2595 (in Chinese) [达朝究, 丑纪范 2008 57 2595]

    [27]

    Jeffrey A, Kawahara T 1982 Asymptotic Methods in Nonlinear Waves Theory (Melbourne: Pitman Publishing Inc.) pp256-266

  • [1] 吴朝俊, 方礼熠, 杨宁宁. 含有偏置电压源的非齐次分数阶忆阻混沌电路动力学分析与实验研究.  , 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] 黎宇坤, 董建军, 陈韬, 宋仔锋, 王强强, 邓克立, 邓博, 曹柱荣, 王峰. 对钙钛矿CsPbX3的X光波段外光电效应的研究.  , 2021, 70(19): 197901. doi: 10.7498/aps.70.20210651
    [3] 付元光, 邓力, 李刚. 非齐次燃耗方程数值解法.  , 2018, 67(17): 172802. doi: 10.7498/aps.67.20172650
    [4] 李少峰, 杨联贵, 宋健. 层结流体中在热外源和效应地形效应作用下的非线性Rossby孤立波和非齐次Schrdinger方程.  , 2015, 64(19): 199201. doi: 10.7498/aps.64.199201
    [5] 万晖. 带源项的变系数非线性反应扩散方程的精确解.  , 2013, 62(9): 090203. doi: 10.7498/aps.62.090203
    [6] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法.  , 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [7] 蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富. 外磁场对介质表面次级电子倍增效应的影响.  , 2012, 61(7): 075101. doi: 10.7498/aps.61.075101
    [8] 刘昆, 宁传刚, 石砳磊, 苗雨润, 邓景康. 探测二茂铁外价轨道(e,2e)反应中的扭曲波效应.  , 2011, 60(2): 023402. doi: 10.7498/aps.60.023402
    [9] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究.  , 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [10] 宋健, 杨联贵, 刘全生. 强迫耗散与效应地形效应作用下的非线性Rossby波包.  , 2011, 60(10): 104701. doi: 10.7498/aps.60.104701
    [11] 张继兵, 张建忠, 杨毅彪, 梁君生, 王云才. 外腔半导体激光器随机数熵源的腔长分析.  , 2010, 59(11): 7679-7685. doi: 10.7498/aps.59.7679
    [12] 宋健, 杨联贵. 层结流体中具有β效应与地形效应的强迫Rossby孤立波.  , 2010, 59(5): 3309-3314. doi: 10.7498/aps.59.3309
    [13] 宋健, 赖俊峰. 正压流体中具有β效应与地形效应的强迫Rossby孤立波.  , 2010, 59(7): 4756-4760. doi: 10.7498/aps.59.4756
    [14] 张 磊, 任 敏, 胡九宁, 邓 宁, 陈培毅. 用外磁场控制电流感应磁化翻转效应中的临界电流方法.  , 2008, 57(4): 2427-2431. doi: 10.7498/aps.57.2427
    [15] 达朝究, 丑纪范. 缓变地形下Rossby波振幅演变满足的带有强迫项的KdV方程.  , 2008, 57(4): 2595-2599. doi: 10.7498/aps.57.2595
    [16] 李德生, 张鸿庆. 改进的tanh函数方法与广义变系数KdV和MKdV方程新的精确解.  , 2003, 52(7): 1569-1573. doi: 10.7498/aps.52.1569
    [17] 聂一行, 石云龙, 张云波, 梁九卿, 蒲富恪. 外磁场中单畴反铁磁颗粒的宏观量子效应.  , 2000, 49(8): 1580-1585. doi: 10.7498/aps.49.1580
    [18] 楼森岳, 阮航宇. 变系数KdV方程和变系数MKdV方程的无穷多守恒律.  , 1992, 41(2): 182-187. doi: 10.7498/aps.41.182
    [19] 薛社生, 冼鼎昌. 规范协变理论中的Casimir效应.  , 1985, 34(8): 1084-1087. doi: 10.7498/aps.34.1084
    [20] 李强法. 缓变波导开放谐振腔的理论分析.  , 1980, 29(11): 1405-1415. doi: 10.7498/aps.29.1405
计量
  • 文章访问数:  8038
  • PDF下载量:  526
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-21
  • 修回日期:  2012-04-12
  • 刊出日期:  2012-11-05

/

返回文章
返回
Baidu
map