-
In barotropic fluids, based on the quasi-geostrophic potential vorticity equation, an inhomogeneous nonlinear Schrdinger equation including topographic forcing and an external source is derived by employing the perturbation method and stretching transforms of time and space. With the inspection of the evolution of the amplitude of Rossby envelope solitary waves, it is found that effect, topography effect and an external source are the important factors, the solitary Rossby wave is induced though the basic stream function has a shear flow. On the assumption that nonlinear and topographic effects are balanced, an inhomogeneous equation is derived, and the results show that the topography and Rossby waves interact in the barotropic flow. The inhomogeneous nonlinear Schrdinger equation describing the evolution of the amplitude of solitary Rossby envelope solitary waves as the change of Rossby parameter (y) with latitude y, topographic forcing and the external source is obtained.
-
Keywords:
- Rossby envelope waves /
- effect /
- topographic /
- Schrdinger equation
[1] Matsuno T 1966 J.Meteor.Soc. Japan 44 25
[2] McWilliams J 1980 Dyn.Atmos.Oceans 5 43
[3] Redekopp L G 1977 J.Fluid Mech. 82 725
[4] Malguzi P, Malanotte Rizzoli 1984 J.Atmos.Sci. 41 2620
[5] Tan B K, Wu R S 1993 Sci.in China B 23 437(in Chinese)[谭本馗、伍荣生 1993 中国科学B辑 23 437]
[6] Tan B K, Wu R S 1995 Sci.Atmos.Sin. 19 299(in Chinese)
[7] Luo D H, Ji L R 1989 Sci.in China B 1 103(in Chinese)[罗德海、纪立人 1989 中国科学B辑 1 103]
[8] Chraney J G, Straus D M 1980 J.Atmos.Sci. 37 1157
[9] Feng G L, Dai X G, Wang A H, Chou J F 2001 Acta Phys.Sin. 50 606(in Chinese)[封国林、戴新刚、王爱慧、丑纪范 2001 50 606]
[10] Feng G L, Dong W J, Jia X J, Cao H X 2002 Acta Phys.Sin. 51 1181(in Chinese)[封国林、董文杰、贾晓静、曹鸿兴 2002 51 1181]
[11] Feng G L, Gao X Q, Dong W J, Li J P 2008 Chaos Solitons and Fractals 37 487
[12] Feng G L, Gong Z Q, Zhi R, Zhang D Q 2008 Chin. Phys. B 17 2745
[13] Feng G L, Wang Q G, Hou W, Gong Z Q, Zhi R 2009 Acta Phys.Sin. 58 2853(in Chinese)[封国林、王启光、侯 威、龚志强、支 蓉 2009 58 2853]
[14] He W P, Feng G L, Dong W J, Li J P 2004 Acta Phys.Sin. 53 3258(in Chinese)[何文平、封国林、董文杰、李建平 2004 53 3258]
[15] He W P,Feng G L, Wu Q, Wan S Q, Chou J F 2008 Non. Pro.Geophys. 15 601
[16] Meng Lu, Lu K L 2000 Chin. J.Compu.Phys. 17 259
[17] Patione A, Warn T 1982 J.Atmos.Sci. 39 1018
[18] Warn T, Brasnett B 1982 J.Atmos.Sci. 40 28
[19] Jeffrey A, Kawahara T 1982 Asymptotic Methods in Nonlinear Waves Theory (Melbourne: Pitman Publishing Inc.)p256—266
[20] Kuo X 1949 J.Meteoro. 6 105
-
[1] Matsuno T 1966 J.Meteor.Soc. Japan 44 25
[2] McWilliams J 1980 Dyn.Atmos.Oceans 5 43
[3] Redekopp L G 1977 J.Fluid Mech. 82 725
[4] Malguzi P, Malanotte Rizzoli 1984 J.Atmos.Sci. 41 2620
[5] Tan B K, Wu R S 1993 Sci.in China B 23 437(in Chinese)[谭本馗、伍荣生 1993 中国科学B辑 23 437]
[6] Tan B K, Wu R S 1995 Sci.Atmos.Sin. 19 299(in Chinese)
[7] Luo D H, Ji L R 1989 Sci.in China B 1 103(in Chinese)[罗德海、纪立人 1989 中国科学B辑 1 103]
[8] Chraney J G, Straus D M 1980 J.Atmos.Sci. 37 1157
[9] Feng G L, Dai X G, Wang A H, Chou J F 2001 Acta Phys.Sin. 50 606(in Chinese)[封国林、戴新刚、王爱慧、丑纪范 2001 50 606]
[10] Feng G L, Dong W J, Jia X J, Cao H X 2002 Acta Phys.Sin. 51 1181(in Chinese)[封国林、董文杰、贾晓静、曹鸿兴 2002 51 1181]
[11] Feng G L, Gao X Q, Dong W J, Li J P 2008 Chaos Solitons and Fractals 37 487
[12] Feng G L, Gong Z Q, Zhi R, Zhang D Q 2008 Chin. Phys. B 17 2745
[13] Feng G L, Wang Q G, Hou W, Gong Z Q, Zhi R 2009 Acta Phys.Sin. 58 2853(in Chinese)[封国林、王启光、侯 威、龚志强、支 蓉 2009 58 2853]
[14] He W P, Feng G L, Dong W J, Li J P 2004 Acta Phys.Sin. 53 3258(in Chinese)[何文平、封国林、董文杰、李建平 2004 53 3258]
[15] He W P,Feng G L, Wu Q, Wan S Q, Chou J F 2008 Non. Pro.Geophys. 15 601
[16] Meng Lu, Lu K L 2000 Chin. J.Compu.Phys. 17 259
[17] Patione A, Warn T 1982 J.Atmos.Sci. 39 1018
[18] Warn T, Brasnett B 1982 J.Atmos.Sci. 40 28
[19] Jeffrey A, Kawahara T 1982 Asymptotic Methods in Nonlinear Waves Theory (Melbourne: Pitman Publishing Inc.)p256—266
[20] Kuo X 1949 J.Meteoro. 6 105
Catalog
Metrics
- Abstract views: 9139
- PDF Downloads: 758
- Cited By: 0