搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀光纤中暗孤子传输特性研究

潘楠 黄平 黄龙刚 雷鸣 刘文军

引用本文:
Citation:

非均匀光纤中暗孤子传输特性研究

潘楠, 黄平, 黄龙刚, 雷鸣, 刘文军

Study on transmission characteristics of dark solitons in inhomogeneous optical fibers

Pan Nan, Huang Ping, Huang Long-Gang, Lei Ming, Liu Wen-Jun
PDF
导出引用
  • 由于变系数非线性Schrödinger方程的增益、色散和非线性项都是变化的, 根据方程这一特点可以研究光脉冲在非均匀光纤中的传输特性. 本文利用Hirota方法, 得到非线性Schrödinger方程的解析暗孤子解. 然后根据暗孤子解对暗孤子的传输特性进行讨论, 并且分析各个物理参量对暗孤子传输的影响. 经研究发现, 通过调节光纤的损耗、色散和非线性效应都能有效的控制暗孤子的传输, 从而提高非均匀光纤中的光脉冲传输质量. 此外, 本文还得到了所求解方程的解析双暗孤子解, 最后对两个暗孤子相互作用进行了探讨. 本文得到的结论有利于研究非均匀光纤中的孤子控制技术.
    The terms of gain(or absorption), dispersion, and nonlinearity in the nonlinear Schrödinger equation are usually variables, which can be used to study the propagation of optical pulses in inhomogeneous optical fibers. In this paper, with the aid of the Hirota method, the bilinear forms of the Schrödinger equation are derived. Based on the bilinear form, the analytic dark soliton solutions to the nonlinear Schrödinger equation are obtained. The properties of dark solitons are discussed. Stable dark solitons are observed in the normal dispersion regime. In addition, corresponding parameters for controlling the propagation of dark solitons are analyzed. Results of our reflearch show that the propagation route of solitons can be effectively controlled by the gain(or absorption), dispersion, and nonlinearity, which can improve the quality of signal transmission in optical communications. When the amplitude of the loss coefficient increases, the amplitude of the dark soliton increases suddenly during the transmission process.By means of changing the type of dispersion, the purpose of controlling the dark soliton phase and phase oscillation is achieved. The possibly applicable soliton control techniques, which are used to design dispersion and nonlinearity-managed systems, are proposed. The proposed techniques may find applications in soliton management communication links, like soliton control.In addition, two-soliton solution is obtained. With the dark two-soliton solution, the interaction between two solitons is discussed in the paper. The result may be of potential application in the ultralarge capacity transmission systems.
    • 基金项目: 国家自然科学基金(批准号: 61205064)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61205064).
    [1]

    Hasegawa A, Tappert F 1973 Appl. Phys. Lett. 23 142

    [2]

    Kuznetsov E A, Rubenchik A M, Zakharov V E 1986 Phys. Rep. 142 103

    [3]

    Frantzeskakis D J 2010 J. Phys. A 43 213001

    [4]

    Wang W B, Yang H, Tang P H, Han F 2013 Acta Phys. Sin. 62 184202 (in Chinese) [王威彬, 杨华, 唐平华, 韩芳 2013 62 184202]

    [5]

    Kivshar Y S, Agrawal G 2003 Optical Solitons: from Fibers to Photonic Crystals (San Diego: Academic Press)

    [6]

    Li Z J, Hai W H, Deng Y 2013 Chin. Phys. B 22 090505

    [7]

    Tang B, Li D J, Tang Y 2014 Chaos 24 023113

    [8]

    Zhao W, Bourkoff E 1989 Opt. Lett. 14 703

    [9]

    Zhao W, Bourkoff E 1992 JOSA B 9 1134

    [10]

    Hamaide J P, Emplit P, Haelterman M 1991 Opt. Lett. 16 1578

    [11]

    Uzunov I M, Gerdjikov V S 1993 Phys. Rev. A 47 1582

    [12]

    Agrawal G P 2007 Nonlinear Fiber Optics (San Diego: Academic Press)

    [13]

    Mollenauer L, Gordon J P 2006 Solitons in Optical Fibers (Burlington: Academic Press)

    [14]

    Liu W J 2011 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese) [刘文军 2011 博士学位论文 (北京: 北京邮电大学)]

    [15]

    Serkin V N, Hasegawa A 2000 Phys. Rev. Lett. 85 4502

    [16]

    SerkinV N, Hasegawa A 2000 JETP Lett. 72 89

    [17]

    SerkinV N, Hasegawa A 2002 IEEEJ. Sel. Top. Quant. 8 418

    [18]

    LiL, Li Z H, Li S Q, Zhou G S 2004 Opt. Commun. 234 169

    [19]

    HaoRY, Li L, Li Z H, Xue W R, Zhou G S 2004 Opt. Commun. 236 79

    [20]

    HaoRY, Li L, Li Z H, Yang R C, Zhou G S 2005 Opt. Commun. 245 383

    [21]

    Wang L Y, Li L, Li Z H, Zhou G S, Mihalache D 2005 Phys. Rev. E 72 036614

    [22]

    SerkinV N, Hasegawa A, Belyaeva TL 2007 Phys. Rev. Lett. 90 113902

    [23]

    Wang J F, Li L, Jia S T 2008 JOSAB 25 1254

    [24]

    Zolotovskii I O, Novikov S G, Okhotnikov O G 2012 Opt. Spectr. 112 893

    [25]

    Li S C, Wu L H, Lin M M, Duan W S 2007 Chin. Phys. Lett. 24 2312

    [26]

    Sun Q H, Pan N, Lei M, Liu W J 2014 Acta Phys. Sin. 63 150506 (in Chinese) [孙庆华, 潘楠, 雷鸣, 刘文军 2014 63 150506]

    [27]

    Luo H G, Zhao D, He X G 2009 Phys. Rev. A 79 063802

    [28]

    Gao Y T, Tian B 2007 Phys. Lett. A 361 523

    [29]

    Liu W J, Lei M 2013 J. Electromagnet. Wave. 27 884

    [30]

    Liu W J, Tian B, Zhang H Q, Xu T, Li H 2009 Phys. Rev. A 79 063810

    [31]

    Liu W J, Tian B, Zhang H Q, Li L L, Xue Y S 2008 Phys. Rev. E 77 066605

    [32]

    Liu W J, Tian B, Zhang H Q 2008 Phys. Rev. E 78 066613

  • [1]

    Hasegawa A, Tappert F 1973 Appl. Phys. Lett. 23 142

    [2]

    Kuznetsov E A, Rubenchik A M, Zakharov V E 1986 Phys. Rep. 142 103

    [3]

    Frantzeskakis D J 2010 J. Phys. A 43 213001

    [4]

    Wang W B, Yang H, Tang P H, Han F 2013 Acta Phys. Sin. 62 184202 (in Chinese) [王威彬, 杨华, 唐平华, 韩芳 2013 62 184202]

    [5]

    Kivshar Y S, Agrawal G 2003 Optical Solitons: from Fibers to Photonic Crystals (San Diego: Academic Press)

    [6]

    Li Z J, Hai W H, Deng Y 2013 Chin. Phys. B 22 090505

    [7]

    Tang B, Li D J, Tang Y 2014 Chaos 24 023113

    [8]

    Zhao W, Bourkoff E 1989 Opt. Lett. 14 703

    [9]

    Zhao W, Bourkoff E 1992 JOSA B 9 1134

    [10]

    Hamaide J P, Emplit P, Haelterman M 1991 Opt. Lett. 16 1578

    [11]

    Uzunov I M, Gerdjikov V S 1993 Phys. Rev. A 47 1582

    [12]

    Agrawal G P 2007 Nonlinear Fiber Optics (San Diego: Academic Press)

    [13]

    Mollenauer L, Gordon J P 2006 Solitons in Optical Fibers (Burlington: Academic Press)

    [14]

    Liu W J 2011 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese) [刘文军 2011 博士学位论文 (北京: 北京邮电大学)]

    [15]

    Serkin V N, Hasegawa A 2000 Phys. Rev. Lett. 85 4502

    [16]

    SerkinV N, Hasegawa A 2000 JETP Lett. 72 89

    [17]

    SerkinV N, Hasegawa A 2002 IEEEJ. Sel. Top. Quant. 8 418

    [18]

    LiL, Li Z H, Li S Q, Zhou G S 2004 Opt. Commun. 234 169

    [19]

    HaoRY, Li L, Li Z H, Xue W R, Zhou G S 2004 Opt. Commun. 236 79

    [20]

    HaoRY, Li L, Li Z H, Yang R C, Zhou G S 2005 Opt. Commun. 245 383

    [21]

    Wang L Y, Li L, Li Z H, Zhou G S, Mihalache D 2005 Phys. Rev. E 72 036614

    [22]

    SerkinV N, Hasegawa A, Belyaeva TL 2007 Phys. Rev. Lett. 90 113902

    [23]

    Wang J F, Li L, Jia S T 2008 JOSAB 25 1254

    [24]

    Zolotovskii I O, Novikov S G, Okhotnikov O G 2012 Opt. Spectr. 112 893

    [25]

    Li S C, Wu L H, Lin M M, Duan W S 2007 Chin. Phys. Lett. 24 2312

    [26]

    Sun Q H, Pan N, Lei M, Liu W J 2014 Acta Phys. Sin. 63 150506 (in Chinese) [孙庆华, 潘楠, 雷鸣, 刘文军 2014 63 150506]

    [27]

    Luo H G, Zhao D, He X G 2009 Phys. Rev. A 79 063802

    [28]

    Gao Y T, Tian B 2007 Phys. Lett. A 361 523

    [29]

    Liu W J, Lei M 2013 J. Electromagnet. Wave. 27 884

    [30]

    Liu W J, Tian B, Zhang H Q, Xu T, Li H 2009 Phys. Rev. A 79 063810

    [31]

    Liu W J, Tian B, Zhang H Q, Li L L, Xue Y S 2008 Phys. Rev. E 77 066605

    [32]

    Liu W J, Tian B, Zhang H Q 2008 Phys. Rev. E 78 066613

  • [1] 杨佳奇, 刘文军. 基于变系数3+1维三次-五次复金兹堡-朗道方程的亮孤子及混合孤子传输特性.  , 2023, 72(10): 100504. doi: 10.7498/aps.72.20222430
    [2] 李森清, 张肖, 林机. 非局域非线性耦合器中暗孤子的传输.  , 2021, 70(18): 184206. doi: 10.7498/aps.70.20210275
    [3] 谭康伯, 路宏敏, 官乔, 张光硕, 陈冲冲. 电磁诱导透明暗孤子的耗散变分束缚分析.  , 2018, 67(6): 064207. doi: 10.7498/aps.67.20172567
    [4] 谢元栋. 各向异性海森伯自旋链中的高阶孤子.  , 2016, 65(20): 207501. doi: 10.7498/aps.65.207501
    [5] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子.  , 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [6] 李少峰, 杨联贵, 宋健. 层结流体中在热外源和效应地形效应作用下的非线性Rossby孤立波和非齐次Schrdinger方程.  , 2015, 64(19): 199201. doi: 10.7498/aps.64.199201
    [7] 闫青, 贾维国, 于宇, 张俊萍, 门克内木乐. 拉曼增益对高双折射光纤中暗孤子俘获的影响.  , 2015, 64(18): 184211. doi: 10.7498/aps.64.184211
    [8] 孙庆华, 潘楠, 雷鸣, 刘文军. 色散渐变光纤中相移控制研究.  , 2014, 63(15): 150506. doi: 10.7498/aps.63.150506
    [9] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析.  , 2013, 62(4): 044214. doi: 10.7498/aps.62.044214
    [10] 李帮庆, 马玉兰, 王聪, 徐美萍, 李阳. 耦合Schrödinger系统的周期振荡折叠孤子.  , 2011, 60(6): 060203. doi: 10.7498/aps.60.060203
    [11] 张蔚曦, 佘彦超, 王登龙. 计及两体和三体作用下的二维凝聚体中的孤子特性.  , 2011, 60(7): 070514. doi: 10.7498/aps.60.070514
    [12] 宋健, 姜楠, 杨联贵. 切变基本纬向流中β效应的赤道Rossby孤立波包.  , 2011, 60(2): 024701. doi: 10.7498/aps.60.024701
    [13] 高星辉, 杨振军, 周罗红, 郑一周, 陆大全, 胡巍. 非局域程度对空间暗孤子相互作用的影响.  , 2011, 60(8): 084213. doi: 10.7498/aps.60.084213
    [14] 钱存, 王亮亮, 张解放. 变系数非线性Schrödinger方程的孤子解及其相互作用.  , 2011, 60(6): 064214. doi: 10.7498/aps.60.064214
    [15] 张民仓, 皇甫国庆. 环状非有心势场中Schr?dinger方程的精确解.  , 2010, 59(10): 6819-6823. doi: 10.7498/aps.59.6819
    [16] 程雪苹, 林机, 韩平. 三维非线性Schr?dinger方程的直接微扰方法.  , 2010, 59(10): 6752-6756. doi: 10.7498/aps.59.6752
    [17] 宗丰德, 戴朝卿, 杨 琴, 张解放. 光纤中变系数非线性Schr?dinger方程的孤子解及其应用.  , 2006, 55(8): 3805-3812. doi: 10.7498/aps.55.3805
    [18] 江德生, 欧阳世根, 佘卫龙. 暗-暗与亮-暗光伏孤子相互作用.  , 2004, 53(11): 3777-3785. doi: 10.7498/aps.53.3777
    [19] 佘卫龙, 王晓生, 何国岗, 陶孟仙, 林励平, 李荣基. 折射率改变为正的光折变晶体中形成一维光伏暗孤子.  , 2001, 50(11): 2166-2171. doi: 10.7498/aps.50.2166
    [20] 刘中柱, 黄念宁. 用广田直接法求带高阶修正的扩充的非线性Schr?dinger方程的孤子解.  , 1991, 40(1): 1-7. doi: 10.7498/aps.40.1
计量
  • 文章访问数:  6790
  • PDF下载量:  3803
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-12
  • 修回日期:  2014-12-15
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map