搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脉冲耦合神经网络和图像熵的各向异性扩散模型研究

郭业才 周林锋

引用本文:
Citation:

基于脉冲耦合神经网络和图像熵的各向异性扩散模型研究

郭业才, 周林锋

Study of anisotropic diffusion model based on pulse coupled neural network and image entropy

Guo Ye-Cai, Zhou Lin-Feng
PDF
导出引用
  • 在图像去噪过程中, 大部分基于偏微分方程的各向异性扩散模型均使用梯度信息检测边缘, 当边缘部分被噪声严重污染时, 这些方法不能有效检测出这些边缘, 因而无法保留边缘特征. 为了较完整的保留图像的区域信息, 用脉冲耦合神经网络(PCNN)能使具有相似输入的神经元同时产生脉冲的性质对噪声图像做处理, 得到图像熵序列, 并将图像熵序列作为边缘检测算子引入到扩散方程中, 不仅能克服仅用梯度作为边缘检测算子易受噪声影响的弊端, 而且能较完整地保留图像的区域信息. 然后, 用最小交叉熵准则搜索使去噪前后图像信息量差异最小的阈值, 设计最佳阈值控制扩散强度, 建立基于脉冲耦合神经网络与图像熵改进的各向异性扩散模型(PCNN-IEAD). 分析与仿真结果表明, 该模型与经典模型相比, 保留了更多的图像信息, 能够兼顾去除图像的噪声和保护图像的边缘纹理等细节信息, 较完整的保留了图像的区域信息, 性能指标同样也证实了新模型的优越性. 另外, 该模型的运行时间较经典模型的短, 因此, 该模型是一个理想的模型.
    In image processing, most of the anisotropic diffusion models based on partial differential equation use gradient information to detect image edge. If the image edge is seriously polluted by noise, these methods would not be able to detect image edge, so the edge features cannot be retained. Pulse coupled neural network (PCNN) has the property that similar input neurons can generate pulse at the same time; this property is used to process the noisy image, and we can get an image entropy sequence. The image entropy sequence which will be used as an edge detecting operator is introduced into the diffusion equation, and this will not only reduce the defects produced when the gradient is used as an edge detecting operator so it is easily affected by the noise, but the area image information can also retain more completely. Then, we will use the rule of minimum cross entropy to search for a minimum threshold, which would satisfy the condition that the information difference between noisy image and denoised image is the minimum. The optimal threshold designed will control diffusion intensity reasonably, and the anisotropic diffusion model based on pulse coupled neural network and image entropy (PCNN-IEAD) can be established. Analysis and simulation results show that the proposed model preserves more image information than the classical ones. It removes the image noise and at the same time protects the edge texture details of the image; the proposed model retains the area image information more completely, the performance indexes can also confirm the superiority of the new model. In addition, the operating time of the proposed model is shorter than that of the classical models, therefore, the proposed model may be the ideal one.
      通信作者: 郭业才, guo-yecai@163.com
    • 基金项目: 国家自然科学基金(批准号: 11202106, 61201444)、教育部高等学校博士学科点专项科研基金(批准号: 20123228120005)、江苏省信息与通信工程优势学科建设项目、江苏省气象探测与信息处理重点实验室开放课题(批准号: KDXS1204, KDXS1403)、江苏省青蓝工程和江苏省高校自然科学研究项目(批准号: 13KJB170016)资助的课题.
      Corresponding author: Guo Ye-Cai, guo-yecai@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11202106, 61201444), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123228120005), the Jiangsu Information and Communication Engineering Preponderant Discipline Platform, China, Jiangsu Key Laboratory of Meteorological Observation and Information Processing (Grant Nos. KDXS1204, KDXS1403), the Jiangsu Qing Lan Project and the Natural Sciences Fundation from the Universities of Jiangsu Province of China (Grant No. 13KJB170016).
    [1]

    Zhang W, Li J J, Yang Y P 2014 Signal Process 103 6

    [2]

    Chumchob N 2013 IEEE Trans. Image Process 22 4551

    [3]

    Wu T T, Yang Y F, Pang Z F 2012 Appl. Numer. Math. 62 79

    [4]

    Wu J, Tang C 2011 IEEE Trans. Image Process 20 2428

    [5]

    Brito-Loeza C, Chen K 2010 IEEE Trans. Image Process 19 1518

    [6]

    Wang Z, Huang X, Li Y X, Song X N 2013 Chin. Phys. B 22 010504

    [7]

    Perona P, Malik J 1990 IEEE Trans. Pattern Anal. Mach. Intell. 12 629

    [8]

    Rudin L I, Osher S, Fatemi E 1992 Physica D 60 259

    [9]

    Cheng L Y, Tang C, Yan S 2011 Optics Communications 284 5549

    [10]

    Liu P, Fang H, Li G Q, Liu Z W 2012 IEEE Geosci. Remote Sens. 9 358

    [11]

    Niang O, Thioune A, Gueirea M C 2012 IEEE Trans. Image Process 21 3991

    [12]

    Bumsub H, Dongbo M, Kwanghoon So 2013 IEEE Trans. Image Process 22 1096

    [13]

    Zhou X C, Wang M L, Zhou L F, Wu Q 2015 Acta Phys. Sin. 64 024205(in Chinese) [周先春, 汪美玲, 周林锋, 吴琴 2015 64 024205]

    [14]

    Zhou X C, Shi L F, Han X L, Mo J Q 2014 Chin. Phys. B 23 090204

    [15]

    Zhou X C, Shi L F, Mo J Q 2014 Chin. Phys. B 23 040202

    [16]

    Zhang Y H, Ding Y, Wang L H 2011 Procedia Engineering 15 2778

    [17]

    Li J C, Ma Z H, Peng Y X, Huang B 2013 Acta Phys. Sin. 62 099501(in Chinese) [李金才, 马自辉, 彭宇行, 黄斌 2013 62 099501]

    [18]

    Zhang K K, Gao X B, Li X L 2012 IEEE Trans. Image Process 21 4544

    [19]

    Dabov K, Foi A, Katkovnik V, Egiazarian K 2007 IEEE Trans. Image Process 16 2080

    [20]

    Deledalle C A, Denis L, Tupin F 2009 IEEE Trans. Image Process 18 2661

    [21]

    Nikpour M, Hassanpour H 2010 IET Image Process 4 452

    [22]

    Kamilov, Bostan E, Unser M 2012 IEEE Signal Process Lett. 19 187

    [23]

    Johnson J L, Padgett M L 1999 IEEE Trans. Neural Netw. 10 480

    [24]

    Ranganath H S, Kuntimad G 1999 IEEE Trans. Neural Netw. 10 615

    [25]

    Weickert J, Bary H R, Max A V 1998 IEEE Trans. Image Process 7 398

    [26]

    Canny J 1986 IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8 679

  • [1]

    Zhang W, Li J J, Yang Y P 2014 Signal Process 103 6

    [2]

    Chumchob N 2013 IEEE Trans. Image Process 22 4551

    [3]

    Wu T T, Yang Y F, Pang Z F 2012 Appl. Numer. Math. 62 79

    [4]

    Wu J, Tang C 2011 IEEE Trans. Image Process 20 2428

    [5]

    Brito-Loeza C, Chen K 2010 IEEE Trans. Image Process 19 1518

    [6]

    Wang Z, Huang X, Li Y X, Song X N 2013 Chin. Phys. B 22 010504

    [7]

    Perona P, Malik J 1990 IEEE Trans. Pattern Anal. Mach. Intell. 12 629

    [8]

    Rudin L I, Osher S, Fatemi E 1992 Physica D 60 259

    [9]

    Cheng L Y, Tang C, Yan S 2011 Optics Communications 284 5549

    [10]

    Liu P, Fang H, Li G Q, Liu Z W 2012 IEEE Geosci. Remote Sens. 9 358

    [11]

    Niang O, Thioune A, Gueirea M C 2012 IEEE Trans. Image Process 21 3991

    [12]

    Bumsub H, Dongbo M, Kwanghoon So 2013 IEEE Trans. Image Process 22 1096

    [13]

    Zhou X C, Wang M L, Zhou L F, Wu Q 2015 Acta Phys. Sin. 64 024205(in Chinese) [周先春, 汪美玲, 周林锋, 吴琴 2015 64 024205]

    [14]

    Zhou X C, Shi L F, Han X L, Mo J Q 2014 Chin. Phys. B 23 090204

    [15]

    Zhou X C, Shi L F, Mo J Q 2014 Chin. Phys. B 23 040202

    [16]

    Zhang Y H, Ding Y, Wang L H 2011 Procedia Engineering 15 2778

    [17]

    Li J C, Ma Z H, Peng Y X, Huang B 2013 Acta Phys. Sin. 62 099501(in Chinese) [李金才, 马自辉, 彭宇行, 黄斌 2013 62 099501]

    [18]

    Zhang K K, Gao X B, Li X L 2012 IEEE Trans. Image Process 21 4544

    [19]

    Dabov K, Foi A, Katkovnik V, Egiazarian K 2007 IEEE Trans. Image Process 16 2080

    [20]

    Deledalle C A, Denis L, Tupin F 2009 IEEE Trans. Image Process 18 2661

    [21]

    Nikpour M, Hassanpour H 2010 IET Image Process 4 452

    [22]

    Kamilov, Bostan E, Unser M 2012 IEEE Signal Process Lett. 19 187

    [23]

    Johnson J L, Padgett M L 1999 IEEE Trans. Neural Netw. 10 480

    [24]

    Ranganath H S, Kuntimad G 1999 IEEE Trans. Neural Netw. 10 615

    [25]

    Weickert J, Bary H R, Max A V 1998 IEEE Trans. Image Process 7 398

    [26]

    Canny J 1986 IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8 679

  • [1] 杨光, 钞苏亚, 聂敏, 刘原华, 张美玲. 面向图像分类的混合量子长短期记忆神经网络构建方法.  , 2023, 72(5): 058901. doi: 10.7498/aps.72.20221924
    [2] 徐子恒, 何玉珠, 康艳梅. 基于随机放电神经元网络的彩色图像感知研究.  , 2022, 71(7): 070501. doi: 10.7498/aps.71.20211982
    [3] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法.  , 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [4] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪. 基于深度学习的联合变换相关器光学图像加密系统去噪方法.  , 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [5] 黄志精, 李倩昀, 白婧, 唐国宁. 在具有排斥耦合的神经元网络中有序斑图的熵测量.  , 2019, 68(11): 110503. doi: 10.7498/aps.68.20190231
    [6] 窦健泰, 高志山, 马骏, 袁操今, 杨忠明. 基于图像信息熵的ptychography轴向距离误差校正.  , 2017, 66(16): 164203. doi: 10.7498/aps.66.164203
    [7] 周先春, 汪美玲, 周林锋, 吴琴. 基于Demons算法改进的图像去噪模型研究.  , 2015, 64(2): 024205. doi: 10.7498/aps.64.024205
    [8] 周先春, 汪美玲, 石兰芳, 周林锋. 基于小波与重调和方程的扩散去噪模型的研究.  , 2015, 64(6): 064203. doi: 10.7498/aps.64.064203
    [9] 周先春, 汪美玲, 石兰芳, 周林锋, 吴琴. 基于梯度与曲率相结合的图像平滑模型的研究.  , 2015, 64(4): 044201. doi: 10.7498/aps.64.044201
    [10] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用.  , 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [11] 周建忠, 陈抱雪, 李家韡, 王关德, 浜中广见. 光波导脉冲耦合器研究.  , 2014, 63(1): 014211. doi: 10.7498/aps.63.014211
    [12] 李金才, 马自辉, 彭宇行, 黄斌. 基于图像熵的各向异性扩散相干斑噪声抑制.  , 2013, 62(9): 099501. doi: 10.7498/aps.62.099501
    [13] 张华, 许录平. 脉冲星脉冲轮廓累积的最小熵方法.  , 2011, 60(3): 039701. doi: 10.7498/aps.60.039701
    [14] 谢映海, 杨维, 张玉. 离散空间上的最小能量框架及其在矩形脉冲信号去噪中的应用研究.  , 2010, 59(11): 8255-8263. doi: 10.7498/aps.59.8255
    [15] 吴一全, 张金矿. 二维直方图θ划分最大Shannon熵图像阈值分割.  , 2010, 59(8): 5487-5495. doi: 10.7498/aps.59.5487
    [16] 唐英干, 邸秋艳, 赵立兴, 关新平, 刘福才. 基于二维最小Tsallis交叉熵的图像阈值分割方法.  , 2009, 58(1): 9-15. doi: 10.7498/aps.58.9
    [17] 董继扬, 张军英, 陈 忠. 自动波竞争神经网络及其在单源最短路问题中的应用.  , 2007, 56(9): 5013-5020. doi: 10.7498/aps.56.5013
    [18] 欧发. 最小熵产生定理与光学被动腔.  , 1990, 39(7): 40-47. doi: 10.7498/aps.39.40-2
    [19] 李如生. 最小熵产生定理和定态的稳定性.  , 1985, 34(7): 956-959. doi: 10.7498/aps.34.956
    [20] 陈式刚. Glansdorff-Prigogine判据与最小熵产生定理.  , 1980, 29(10): 1315-1322. doi: 10.7498/aps.29.1315
计量
  • 文章访问数:  6133
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-31
  • 修回日期:  2015-05-11
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map