Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exploring the stereodynamics of C(3P)+NO(X2)CO(X1+)+N(4S) reaction on 4A potential energy surface

Wei Qiang

Citation:

Exploring the stereodynamics of C(3P)+NO(X2)CO(X1+)+N(4S) reaction on 4A potential energy surface

Wei Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Studies on the dynamical stereochemistry of the titled reaction are carried out by the quasi-classical trajectory (QCT) method based on a new accurate 4A potential energy surface constructed by Abrahamsson and coworkers (Abrahamsson E Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400) at a collision energy of 0.06 eV. The distribution p(r) of the angle between k-j' and the angle distribution P(r in terms of k-k'-j' correlation have been calculated. Results indicate that the rotational angular momentum vector j' of CO is preferentially aligned perpendicular to k and also oriented with respect to the k-k' plane. Three polarization-dependent differential cross sections (2/)(d00/dt), (2/)(d20/dt), and (2/)(d22+/dt) have also been calculated. The preference of backward scattering is found from the results of (2/)(d00/dt). The behavior of (2/)(d20/dt) shows that the variation trend is opposite to that of (2/)(d00/dt), which indicates that j' is preferentially polarized along the direction perpendicular to k. The value of (2/)(d22/dt) is negative for all scattering angles, indicating the marked preference of product alignment along the y-axis. Furthermore, the influences of initial rotational and vibrational excitation on the reaction are shown and discussed. It is found that the initial vibrational excitation and rotational excitation have a larger influence on the alignment distribution of j' but a weaker effect on the orientation distribution of j' in the titled reaction. The influence of the initial vibrational excitation on the three polarization-dependent differential cross sections of product CO is stronger than that of the initial rotational excitation effect.
      Corresponding author: Wei Qiang, qiangwei@cqut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11204392), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1400920).
    [1]

    Boger G I, Sternberg A 2005 Astrophys. J. 632 302

    [2]

    Glarborg P, Alzueta M U, K. Dam-Johansen, Miller J A 1998 Combust. Flame. 115 1

    [3]

    Braun W, Bass A M, Davis D D, Simmons J D 1969 Proc. R. Soc. A 312 417

    [4]

    Husain D, Kirsch L J 1971 Chem. Phys. Lett. 8 543

    [5]

    Husain D, Young A N 1974 J. Chem. Soc. Faraday Trans. 71 525

    [6]

    Becker K H, Brockmann K J, Wiesen P 1988 J. Chem. Soc. Faraday Trans. 84 455

    [7]

    Dean A J, Hanson R K, Bowman C T 1991 J. Phys. Chem. 95 3180

    [8]

    Naulin C, Costes M, Dorthe G 1991 Chem. Phys. 153 519

    [9]

    Costes M, Naulin C, Ghanem N, Dorthe G 1993 J Chem. Soc. Faraday Trans. 89 1501

    [10]

    Halvick P, Rayez J C, Evleth E M 1984 J. Chem. Phys. 81 728

    [11]

    Halvick P, Rayez J C 1989 Chem. Phys. 131 375

    [12]

    Monnerville M, Halvick P, Rayez J C 1993 J. Chem. Soc., Faraday Trans. 89 1579

    [13]

    Andersson S, Markovic N, Nyman G 2000 Chem. Phys. 259 99

    [14]

    Andersson S, Markovic N, Nyman G 2000 Phys. Chem. Chem. Phys. 2 613

    [15]

    Andersson S, Markovic N, Nyman G 2003 J. Phys. Chem. A 107 5439

    [16]

    Abrahamsson E, Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400

    [17]

    Abrahamsson E, Andersson S, Nyman G, Markovic N 2006 Chem. Phys. 324 507

    [18]

    Frankcombe T J, Andersson S 2012 J. Phys. Chem. A 116 4705

    [19]

    Han K L, He G Z, Lou N. Q 1989 Chin. J. Chem. Phys. 2 323

    [20]

    Han K L, He G Z, Lou N Q 1993 Chin. Phys. Lett. 4 517

    [21]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [22]

    Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chemical. Physics. 367 115

    [23]

    Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 58 6926]

    [24]

    Liu S L, Shi Y 2011 Chem. Phys. Lett. 501 197

    [25]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [26]

    Ma J J 2013 Acta Phys. Sin. 62 023401 (in Chinese) [马建军 2013 62 023401]

    [27]

    Bai M M, Ge M H, Yang H, Zheng Y J 2012 Chin. Phys. B 21 123401

    [28]

    Duan Z X, Li W L, Qiu M H 2012 J. Chem. Phys. 136 144309

    [29]

    Ma J J, Cong S L 2009 J. At. Mol. Phys. 26 1081

    [30]

    Ma J J, Zou Y, Liu H T 2013 Chin. Phys. B 22 063402

    [31]

    Wei Q 2015 Chin. Phys. Lett. 32 013101

    [32]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [33]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [34]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [35]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. 283 463

    [36]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [37]

    Zhang X, Han K L 2006 Int. J. Quantum Chem. 106 1815

    [38]

    Liu S L, Shi Y 2011 Chin. Phys. B 20 013404

    [39]

    Tan R S, Liu X G, Hu M 2013 Acta Phys. Sin. 62 073105 (in Chinese) [谭瑞山, 刘新国, 胡梅 2013 62 073105]

    [40]

    Li X H, Wang M S, Pino H, Yang C L, Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438

    [41]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [42]

    Chu T S, Zhang X, Han K L 2005 J. Chem. Phys. 122 214301

    [43]

    Chu T S, Han K L, Schatz G C 2007 J. Phys. Chem. A 111 8286

  • [1]

    Boger G I, Sternberg A 2005 Astrophys. J. 632 302

    [2]

    Glarborg P, Alzueta M U, K. Dam-Johansen, Miller J A 1998 Combust. Flame. 115 1

    [3]

    Braun W, Bass A M, Davis D D, Simmons J D 1969 Proc. R. Soc. A 312 417

    [4]

    Husain D, Kirsch L J 1971 Chem. Phys. Lett. 8 543

    [5]

    Husain D, Young A N 1974 J. Chem. Soc. Faraday Trans. 71 525

    [6]

    Becker K H, Brockmann K J, Wiesen P 1988 J. Chem. Soc. Faraday Trans. 84 455

    [7]

    Dean A J, Hanson R K, Bowman C T 1991 J. Phys. Chem. 95 3180

    [8]

    Naulin C, Costes M, Dorthe G 1991 Chem. Phys. 153 519

    [9]

    Costes M, Naulin C, Ghanem N, Dorthe G 1993 J Chem. Soc. Faraday Trans. 89 1501

    [10]

    Halvick P, Rayez J C, Evleth E M 1984 J. Chem. Phys. 81 728

    [11]

    Halvick P, Rayez J C 1989 Chem. Phys. 131 375

    [12]

    Monnerville M, Halvick P, Rayez J C 1993 J. Chem. Soc., Faraday Trans. 89 1579

    [13]

    Andersson S, Markovic N, Nyman G 2000 Chem. Phys. 259 99

    [14]

    Andersson S, Markovic N, Nyman G 2000 Phys. Chem. Chem. Phys. 2 613

    [15]

    Andersson S, Markovic N, Nyman G 2003 J. Phys. Chem. A 107 5439

    [16]

    Abrahamsson E, Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400

    [17]

    Abrahamsson E, Andersson S, Nyman G, Markovic N 2006 Chem. Phys. 324 507

    [18]

    Frankcombe T J, Andersson S 2012 J. Phys. Chem. A 116 4705

    [19]

    Han K L, He G Z, Lou N. Q 1989 Chin. J. Chem. Phys. 2 323

    [20]

    Han K L, He G Z, Lou N Q 1993 Chin. Phys. Lett. 4 517

    [21]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [22]

    Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chemical. Physics. 367 115

    [23]

    Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 58 6926]

    [24]

    Liu S L, Shi Y 2011 Chem. Phys. Lett. 501 197

    [25]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [26]

    Ma J J 2013 Acta Phys. Sin. 62 023401 (in Chinese) [马建军 2013 62 023401]

    [27]

    Bai M M, Ge M H, Yang H, Zheng Y J 2012 Chin. Phys. B 21 123401

    [28]

    Duan Z X, Li W L, Qiu M H 2012 J. Chem. Phys. 136 144309

    [29]

    Ma J J, Cong S L 2009 J. At. Mol. Phys. 26 1081

    [30]

    Ma J J, Zou Y, Liu H T 2013 Chin. Phys. B 22 063402

    [31]

    Wei Q 2015 Chin. Phys. Lett. 32 013101

    [32]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [33]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [34]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [35]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. 283 463

    [36]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [37]

    Zhang X, Han K L 2006 Int. J. Quantum Chem. 106 1815

    [38]

    Liu S L, Shi Y 2011 Chin. Phys. B 20 013404

    [39]

    Tan R S, Liu X G, Hu M 2013 Acta Phys. Sin. 62 073105 (in Chinese) [谭瑞山, 刘新国, 胡梅 2013 62 073105]

    [40]

    Li X H, Wang M S, Pino H, Yang C L, Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438

    [41]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [42]

    Chu T S, Zhang X, Han K L 2005 J. Chem. Phys. 122 214301

    [43]

    Chu T S, Han K L, Schatz G C 2007 J. Phys. Chem. A 111 8286

  • [1] Zhou Yong. Quantum dynamics study of C—H stretching vibrational excitation in the F+CHD3 → HF+CD3 reaction. Acta Physica Sinica, 2024, 73(9): 098201. doi: 10.7498/aps.73.20231832
    [2] Tang Xiao-Ping, Zhou Can-Hua, He Xiao-Hu, Yu Dong-Qi, Yang Yang. Influence of collision energy on the stereodynamics of the H+CH+→C++H2 reaction. Acta Physica Sinica, 2017, 66(2): 023401. doi: 10.7498/aps.66.023401
    [3] Tang Xiao-Ping, He Xiao-Hu, Zhou Can-Hua, Yang Yang. Effect of reagent vibrational excitation on reaction of H+CH+C++H2. Acta Physica Sinica, 2017, 66(12): 123401. doi: 10.7498/aps.66.123401
    [4] Wang Ming-Xin, Wang Mei-Shan, Yang Chuan-Lu, Liu Jia, Ma Xiao-Guang, Wang Li-Zhi. Influence of isotopic effect on the stereodynamics of reaction H+NH→N+H2. Acta Physica Sinica, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [5] Hu Mei, Liu Xin-Guo, Tan Rui-Shan. Influence of collision energy and reagent vibrational excitation on the stereodynamics of reaction Ar+H2+→ArH++H. Acta Physica Sinica, 2014, 63(2): 023402. doi: 10.7498/aps.63.023402
    [6] Ma Jian-Jun. Collision energy effect on stereodynamics for Sr+CH3I→SrI+CH3. Acta Physica Sinica, 2014, 63(6): 063401. doi: 10.7498/aps.63.063401
    [7] Tan Rui-Shan, Liu Xin-Guo, Hu Mei. Stereodynamics study of Li+HF (v = 0–3,j = 0)→LiF+H reaction. Acta Physica Sinica, 2013, 62(7): 073105. doi: 10.7498/aps.62.073105
    [8] Ma Jian-Jun. Effect of rotational excitation of NO on the stereodynamics for the reaction N(4S)+NO(X2Π)→N2(X3Σg-)+O(3P). Acta Physica Sinica, 2013, 62(2): 023401. doi: 10.7498/aps.62.023401
    [9] Xia Wen-Ze, Yu Yong-Jiang, Yang Chuang-Lu. Influences of isotopic variant and collision energy on the stereodynamics of the N(4S)+H2 reactive system. Acta Physica Sinica, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [10] Li Hong, Zheng Bin, Meng Qing-Tian. Quasi-classical trajectory approach to the influence of the rotational excitation on the stereodynamics of the reaction O+HBrOH+Br. Acta Physica Sinica, 2012, 61(15): 153401. doi: 10.7498/aps.61.153401
    [11] Wang Xiao-Lian, Feng Hao, Sun Wei-Guo, Fan Qun-Chao, Wang Bin, Zeng Yang-Yang. Momentum transfer cross sections of low-energy electron scattering from H2 molecule with the polarization potential using the distributed spherical Gaussian model. Acta Physica Sinica, 2011, 60(2): 023401. doi: 10.7498/aps.60.023401
    [12] Gong Ming-Yan. Rotational excitation of He-BH collision system. Acta Physica Sinica, 2011, 60(7): 073401. doi: 10.7498/aps.60.073401
    [13] Wang Xiao-Lian, Feng Hao, Sun Wei-Guo, Fan Qun-Chao, Zeng Yang-Yang, Wang Bin. Momentum transfer cross sections of low-energy electron scattering from H2 molecule. Acta Physica Sinica, 2010, 59(2): 937-942. doi: 10.7498/aps.59.937
    [14] Liu Xin-Guo, Sun Hai-Zhu, Liu Hui-Rong, Zhang Qing-Gang. Stereodynamics study of O+ +H2 reaction and its isotopic variants. Acta Physica Sinica, 2010, 59(11): 7796-7802. doi: 10.7498/aps.59.7796
    [15] Xu Xue-Song, Zhang Wen-Qin, Jin Kun, Yin Shu-Hui. Effect of vibrational quantum number on stereodynamics of reaction O+HCl→OH+Cl. Acta Physica Sinica, 2010, 59(11): 7808-7814. doi: 10.7498/aps.59.7808
    [16] Shen Guang-Xian, Wang Rong-Kai, Linghu Rong-Feng, Yang Xiang-Dong. Theoretical study on the partial cross section for the second vibrational excitation in He-H2 collisions. Acta Physica Sinica, 2009, 58(6): 3827-3832. doi: 10.7498/aps.58.3827
    [17] Wang Bin, Feng Hao, Sun Wei-Guo, Zeng Yang-Yang, Dai Wei. Vibrational excitation integrated cross sections of e-H2 scattering. Acta Physica Sinica, 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [18] Kong Hao, Liu Xin-Guo, Xu Wen-Wu, Liang Jing-Juan, Zhang Qing-Gang. Stereodynamics study of the reactions of He+H+2 and its isotopic variants. Acta Physica Sinica, 2009, 58(10): 6926-6931. doi: 10.7498/aps.58.6926
    [19] Yu Jiang-Zhou, Feng Hao, Sun Wei-Guo. Studies on the momentum transfer cross sections for low-energy electron scattering by nitrogen molecule. Acta Physica Sinica, 2008, 57(7): 4143-4147. doi: 10.7498/aps.57.4143
    [20] Dai Wei, Feng Hao, Sun Wei-Guo, Tang Yong-Jian, Shen Li, Yu Jiang-Zhou. Studies on vibrational excitation differential cross sections of low-energy electron scattering from N2 molecule by vibrational close-coupling method. Acta Physica Sinica, 2008, 57(1): 143-148. doi: 10.7498/aps.57.143
Metrics
  • Abstract views:  5615
  • PDF Downloads:  122
  • Cited By: 0
Publishing process
  • Received Date:  27 February 2015
  • Accepted Date:  12 May 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map