Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiple synchronous states in a ring of coupled phase oscillators

Huang Xia Xu Can Sun Yu-Ting Gao Jian Zheng Zhi-Gang

Citation:

Multiple synchronous states in a ring of coupled phase oscillators

Huang Xia, Xu Can, Sun Yu-Ting, Gao Jian, Zheng Zhi-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A significant phenomenon in nature is that of collective synchronization, in which a large population of coupled oscillators spontaneously synchronizes at a common frequency. Nonlinearly coupled systems with local interactions are of special importance, in particular, the Kuramoto model in its nearest-neighbor version. In this paper the dynamics of a ring of Kuramoto phase oscillators with unidirectional couplings is investigated. We simulate numerically the bifurcation tree of average frequency observed and the multiple stable states in the synchronization region with the increase of the coupling strength for N4, which cannot be found for N3. Oscillators synchronize at a common frequency =0 when K is larger than a critical value of N=3. Multiple branches with 0 will appear besides the zero branch, and the number of branches increases with increasing oscillators for the system N3. We further present a theoretical analysis on the feature and stability of the multiple synchronous states and obtain the asymptotically stable solutions. When the system of N=2 reaches synchronization, the dynamic equation has two solutions: one is stable and the other is unstable. And there is also one stable solution for N=3 when the system is in global synchronization. For the larger system (N3), we study the identical oscillators and can find all the multiple branches on the bifurcation tree. Our results show that the phase difference between neighboring oscillators has different fixed values corresponding to the numbers of different branches. The behaviors in the synchronization region computed by numerical simulation are consistent with theoretical calculation very well. The systems in which original states belong to different stable states will evolve to the same incoherent state with an adiabatic decreasing of coupling strength. Behaviors of synchronization of all oscillators are exactly the same in non-synchronous region whenever the system evolves from an arbitrary branch according to the bifurcation trees. This result suggests that the only incoherent state can be attributed to the movement ergodicity in the phase space of coupled oscillators in an asynchronous region. When the system achieves synchronization, the phenomenon of the coexistence of multiple stable states will emerge because of the broken ergodicity. All these analyses indicate that the multiple stable states of synchronization in nonlinear coupling systems are indeed generically observable, which can have potential engineering applications.
      Corresponding author: Zheng Zhi-Gang, zgzheng@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475022), the Fundamental Research Funds for the Central Universities of China (Grant No. 2014MS60).
    [1]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Dynamics (Cambridge University Press, Cambridge, England)

    [2]

    Strogatz S 2004 Sync: How Order Emerges From Chaos In the Universe, Nature, and Daily Life (Hyperion, New York)

    [3]

    Kuramoto Y 1984 Chemical Oscilations, Waves and Turbulence (Springer-Verlag, Berlin)

    [4]

    Wiesenfeld K, Colet P, Strogatz S H 1996 Phys. Rev. Lett. 76 404

    [5]

    Cross M C, Zumdieck A, Lifshitz R, Rogers J L 2004 Phys. Rev. Lett. 93 224101

    [6]

    Ermentrout B 1991 J. Math. Biol. 29 571

    [7]

    Vinogradova et al T M 2006 Circ. Res. 98 505

    [8]

    Stam C J 2005 Clin. Neurophysiol. 116 2266

    [9]

    Javaloyes J, Perrin M, Politi A 2008 Phys. Rev. E. 78 011108

    [10]

    Zhu T X,Wu Y,Xiao J H 2012 Acta Phys. Sin. 62 040502 (in Chinese) [朱廷祥, 吴晔, 肖井华 2012 62 040502]

    [11]

    Feng C, Zou Y L, Wei F Q 2013 Acta Phys. Sin. 62 070506 (in Chinese) [冯聪, 邹艳丽, 韦芳琼 2013 62 070506]

    [12]

    Ma X J, Wang Y, Zheng Z G 2009 Acta Phys. Sin. 58 4426 (in Chinese) [马晓娟, 王延, 郑志刚 2009 58 4426]

    [13]

    Park M J, Kwon O M, Park J H, Lee S M, Cha E J 2011 Chin. Phys. B 20 110504

    [14]

    Cai G L, Jiang S Q, Cai S M, Tian L X 2013 Chinese Physics B 22 0502

    [15]

    Kuramoto Y 1975 in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics Vol. 39, edited by H. Araki (Springer, New York, 1975)

    [16]

    Strogatz S H 2000 Physica D 143 1

    [17]

    Acebron J A, Bonilla L L, Vicente J C P, Ritort F, Spigler R 2005 Rev. Mod. Phys. 77 137

    [18]

    Zheng Z G, Hu G, Hu B 1998 Phys. Rev. Lett. 81 5318

    [19]

    Hu B, Zheng G Z 2000 International Journal of Bifurcation and Chaos 10 2399

    [20]

    Ochab J, Gora P F 2010 Acta Physica Polonica B Proceedings Supplement 3 453

    [21]

    Strogatz S H, Mirollo R E 1988 Physica D 31 143

    [22]

    Sakaguchi H 1988 Prog. Theor. Phys. 79 1069

    [23]

    Rogers J L, Wille L T 1996 Phys. Rev. E 54 R2193

    [24]

    El-Nashar H F, Cerdeira H A 2009 Chaos 19 033127

    [25]

    Muruganandam P, Ferreira F F, El-Nashar H, Cerdeira H A 2008 Pramana 70 1143

    [26]

    Maistrenko Y, Popovych O, Burylko O, Tass P A 2004 Phys. Rev. Lett. 93 084102

    [27]

    Brede M 2007 Phys. Lett. A 372 2618

    [28]

    Chen M Y, Shang Y, Zou Y, Kurths J 2008 Phys. Rev. E 77 027101

    [29]

    Liu W Q, Wu Y, Xiao J H, Zhan M 2013 Europhys. Lett. 101 38002

    [30]

    Gomez G J, Gomez S, Arenas A, Moreno Y 2011 Phys. Rev. Lett. 106 128701

    [31]

    Ji P, Peron T, Menck P, Rodrigues F, Kurths J 2013 Phys. Rev. Lett. 110 218701

    [32]

    Zheng Z G, Hu B, Hu G 2000 Phys. Rev. E 62 402

    [33]

    Wu Y, Xiao J H, Hu G, Zhan M 2012 Europhys. Lett. 97 40005

    [34]

    Huang X, Zhan M, Li F, Zheng Z G 2014 J. Phys. A: Math. Theor 47 125101

    [35]

    Tilles P, Ferreira F, Cerdeira 2011 Phys. Rev. E 83 066206

    [36]

    Kim S, Park S H, Ryu C S 1997 Phys. Rev. Lett. 79 2911

    [37]

    Ochab J, Góra P F 2009 arXiv preprint arXiv:0909.0043

  • [1]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Dynamics (Cambridge University Press, Cambridge, England)

    [2]

    Strogatz S 2004 Sync: How Order Emerges From Chaos In the Universe, Nature, and Daily Life (Hyperion, New York)

    [3]

    Kuramoto Y 1984 Chemical Oscilations, Waves and Turbulence (Springer-Verlag, Berlin)

    [4]

    Wiesenfeld K, Colet P, Strogatz S H 1996 Phys. Rev. Lett. 76 404

    [5]

    Cross M C, Zumdieck A, Lifshitz R, Rogers J L 2004 Phys. Rev. Lett. 93 224101

    [6]

    Ermentrout B 1991 J. Math. Biol. 29 571

    [7]

    Vinogradova et al T M 2006 Circ. Res. 98 505

    [8]

    Stam C J 2005 Clin. Neurophysiol. 116 2266

    [9]

    Javaloyes J, Perrin M, Politi A 2008 Phys. Rev. E. 78 011108

    [10]

    Zhu T X,Wu Y,Xiao J H 2012 Acta Phys. Sin. 62 040502 (in Chinese) [朱廷祥, 吴晔, 肖井华 2012 62 040502]

    [11]

    Feng C, Zou Y L, Wei F Q 2013 Acta Phys. Sin. 62 070506 (in Chinese) [冯聪, 邹艳丽, 韦芳琼 2013 62 070506]

    [12]

    Ma X J, Wang Y, Zheng Z G 2009 Acta Phys. Sin. 58 4426 (in Chinese) [马晓娟, 王延, 郑志刚 2009 58 4426]

    [13]

    Park M J, Kwon O M, Park J H, Lee S M, Cha E J 2011 Chin. Phys. B 20 110504

    [14]

    Cai G L, Jiang S Q, Cai S M, Tian L X 2013 Chinese Physics B 22 0502

    [15]

    Kuramoto Y 1975 in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics Vol. 39, edited by H. Araki (Springer, New York, 1975)

    [16]

    Strogatz S H 2000 Physica D 143 1

    [17]

    Acebron J A, Bonilla L L, Vicente J C P, Ritort F, Spigler R 2005 Rev. Mod. Phys. 77 137

    [18]

    Zheng Z G, Hu G, Hu B 1998 Phys. Rev. Lett. 81 5318

    [19]

    Hu B, Zheng G Z 2000 International Journal of Bifurcation and Chaos 10 2399

    [20]

    Ochab J, Gora P F 2010 Acta Physica Polonica B Proceedings Supplement 3 453

    [21]

    Strogatz S H, Mirollo R E 1988 Physica D 31 143

    [22]

    Sakaguchi H 1988 Prog. Theor. Phys. 79 1069

    [23]

    Rogers J L, Wille L T 1996 Phys. Rev. E 54 R2193

    [24]

    El-Nashar H F, Cerdeira H A 2009 Chaos 19 033127

    [25]

    Muruganandam P, Ferreira F F, El-Nashar H, Cerdeira H A 2008 Pramana 70 1143

    [26]

    Maistrenko Y, Popovych O, Burylko O, Tass P A 2004 Phys. Rev. Lett. 93 084102

    [27]

    Brede M 2007 Phys. Lett. A 372 2618

    [28]

    Chen M Y, Shang Y, Zou Y, Kurths J 2008 Phys. Rev. E 77 027101

    [29]

    Liu W Q, Wu Y, Xiao J H, Zhan M 2013 Europhys. Lett. 101 38002

    [30]

    Gomez G J, Gomez S, Arenas A, Moreno Y 2011 Phys. Rev. Lett. 106 128701

    [31]

    Ji P, Peron T, Menck P, Rodrigues F, Kurths J 2013 Phys. Rev. Lett. 110 218701

    [32]

    Zheng Z G, Hu B, Hu G 2000 Phys. Rev. E 62 402

    [33]

    Wu Y, Xiao J H, Hu G, Zhan M 2012 Europhys. Lett. 97 40005

    [34]

    Huang X, Zhan M, Li F, Zheng Z G 2014 J. Phys. A: Math. Theor 47 125101

    [35]

    Tilles P, Ferreira F, Cerdeira 2011 Phys. Rev. E 83 066206

    [36]

    Kim S, Park S H, Ryu C S 1997 Phys. Rev. Lett. 79 2911

    [37]

    Ochab J, Góra P F 2009 arXiv preprint arXiv:0909.0043

  • [1] Jiang Lei, Lai Li, Yu Tao, Luo Mao-Kang. Collective behaviors of globally coupled harmonic oscillators driven by different frequency fluctuations. Acta Physica Sinica, 2021, 70(13): 130501. doi: 10.7498/aps.70.20210157
    [2] Cai Zong-Kai, Xu Can, Zheng Zhi-Gang. Collective dynamics of higher-order coupled phase oscillators. Acta Physica Sinica, 2021, 70(22): 220501. doi: 10.7498/aps.70.20211206
    [3] Wang Xue-Bin, Xu Can, Zheng Zhi-Gang. Synchronization in coupled oscillators with multiplex interactions. Acta Physica Sinica, 2020, 69(17): 170501. doi: 10.7498/aps.69.20200394
    [4] Zheng Zhi-Gang, Zhai Yun, Wang Xue-Bin, Chen Hong-Bin, Xu Can. Synchronization of coupled phase oscillators: Order parameter theory. Acta Physica Sinica, 2020, 69(8): 080502. doi: 10.7498/aps.69.20191968
    [5] Shu Rui, Chen Wei, Xiao Jing-Hua. Optimizing synchronizability of multiplecoupled star networks. Acta Physica Sinica, 2019, 68(18): 180503. doi: 10.7498/aps.68.20190308
    [6] Liao Zhi-Xian, Luo Xiao-Shu. Research on synchronous method for photovoltaic supplied micro-grid based on small-world network model. Acta Physica Sinica, 2014, 63(23): 230502. doi: 10.7498/aps.63.230502
    [7] Sun Zong-Xin, Yu Yang, Zhou Feng, Liu Song-Zuo, Qiao Gang. Underwater acoustic synchronization telemetry research based on binary offset carrier modulated signal with zero correlation window. Acta Physica Sinica, 2014, 63(10): 104301. doi: 10.7498/aps.63.104301
    [8] Li Yu-Shan, Lü Ling, Liu Ye, Liu Shuo, Yan Bing-Bing, Chang Huan, Zhou Jia-Nan. Spatiotemporal chaos synchronization of complex networks by Backstepping design. Acta Physica Sinica, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [9] Liu Yong, Xie Yong. Dynamical characteristics of the fractional-order FitzHugh-Nagumo model neuron and its synchronization. Acta Physica Sinica, 2010, 59(3): 2147-2155. doi: 10.7498/aps.59.2147
    [10] Wang Zhan-Shan, Zhang Hua-Guang, Wang Zhi-Liang. Global synchronization of a class of chaotic neural networks. Acta Physica Sinica, 2006, 55(6): 2687-2693. doi: 10.7498/aps.55.2687
    [11] Qian Yu, Song Xuan-Yu, Shi Wei, Chen Guang-Zhi, Xue Yu. Turbulence synchronization and suppression by coupling in excitable media. Acta Physica Sinica, 2006, 55(9): 4420-4427. doi: 10.7498/aps.55.4420
    [12] Sang Xin-Zhu, Yu Chong-Xiu, Wang Kui-Ru. Experimental investigation on wavelength-tunable chaos generation and synchronization. Acta Physica Sinica, 2006, 55(11): 5728-5732. doi: 10.7498/aps.55.5728
    [13] Yu Hong-Jie, Liu Yan-Zhu. Synchronization of symmetrically nonlinear-coupled chaotic systems. Acta Physica Sinica, 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [14] Ma Jun, Liao Gao-Hua, Mo Xiao-Hua, Li Wei-Xue, Zhang Ping-Wei. Hyperchaos synchronization and control using intermittent feedback. Acta Physica Sinica, 2005, 54(12): 5585-5590. doi: 10.7498/aps.54.5585
    [15] Tao Chao-Hai, Lu Jun-An. Speed feedback synchronization of a chaotic system. Acta Physica Sinica, 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [16] Yan Sen-Lin, Chi Ze-Ying, Chen Wen-Jian, Wang Ze-Nong. Synchronization and decoding of chaotic lasers and their optimization. Acta Physica Sinica, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [17] Zhang Ting-Xian, Zheng Zhi-Gang. Synchronization of coupled limit-cycle systems. Acta Physica Sinica, 2004, 53(10): 3287-3292. doi: 10.7498/aps.53.3287
    [18] Zhang Xu, Shen Ke. Unilaterally coupled synchronization of spatiotemporal chaos. Acta Physica Sinica, 2002, 51(12): 2702-2706. doi: 10.7498/aps.51.2702
    [19] Lu Zhi-Gang, Yu Ling-Hui, Liu Xiao-Jing, Gao Mei-Jing, Wu Shi-Chang. . Acta Physica Sinica, 2002, 51(10): 2211-2215. doi: 10.7498/aps.51.2211
    [20] Lai Jian-Wen, Zhou Shi-Ping, Li Guo-Hui, Xu De-Ming. . Acta Physica Sinica, 2001, 50(1): 21-25. doi: 10.7498/aps.50.21
Metrics
  • Abstract views:  6197
  • PDF Downloads:  311
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2015
  • Accepted Date:  30 April 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map