搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多重耦合振子系统的同步动力学

王学彬 徐灿 郑志刚

引用本文:
Citation:

多重耦合振子系统的同步动力学

王学彬, 徐灿, 郑志刚

Synchronization in coupled oscillators with multiplex interactions

Wang Xue-Bin, Xu Can, Zheng Zhi-Gang
PDF
HTML
导出引用
  • 耦合相振子的同步研究对理解复杂系统自组织协同的涌现具有重要的理论意义. 相比于传统耦合振子的两体成对耦合, 多重耦合近年来得到广泛的关注. 当相振子间的多重耦合机制起主要作用时, 系统会涌现一系列去同步突变, 这一新颖的动力学特性对理解复杂系统群体动力学提供了重要的理论启示. 本文研究了平均场的三重耦合Kuramoto系统的同步动力学, 发现了去同步转变具有不可逆性, 并利用平均场自洽方法和无序态线性稳定性分析揭示了不可逆去同步突变的动力学机制. 进一步研究发现, 随着振子自然频率分布半宽度的变化, 系统会经历一系列去同步驻波态的转变. 在相变临界点, 系统在高维相空间会通过鞍结分岔导致同步态失稳而塌缩至稳定的低维不变环面. 本文的研究揭示了多重耦合函数作用的振子系统的各种协同态及其相变机制, 同时可为理解其他复杂系统(如超网络结构)协同态的动力学转变提供理论借鉴.
    The study of synchronizations in coupled oscillators is very important for understanding the occurrence of self-organized behaviors in complex systems. In the traditional Kuramoto model that has been extensively applied to the study of synchronous dynamics of coupled oscillators, the interaction function among oscillators is pairwise. The multiplex interaction mechanism that describes triple or multiple coupling functions has been a research focus in recent years. When the multiplex coupling dominates the interactions among oscillators, the phase oscillator systems can exhibit the typical abrupt desynchronization transitions. In this paper, we extensively investigate the synchronous dynamics of the Kuramoto model with mean-field triple couplings. We find that the abrupt desynchronization transition is irreversible, i.e. the system may experience a discontinuous transition from coherent state to incoherent state as the coupling strength deceases adiabatically, while the reversed transition cannot occur by adiabatically increasing the coupling. Moreover, the coherent state strongly depends on initial conditions. The dynamical mechanism of this irreversibility is theoretically studied by using the self-consistency approach. The neutral stability of ordered state is also explained through analyzing the linear-stability of the incoherent state. Further studies indicate that the system may experience a cascade of desynchronized standing-wave transitions when the width of the distribution function of natural frequencies of oscillators is changed. At the critical coupling, the motion of coupled oscillators in high-dimensional phase space becomes unstable through the saddle-node bifurcation and collapses into a stable low-dimensional invariant torus, which corresponds to the standing-wave state. The above conclusions and analyses are further extended to the case of multi-peak natural-frequency distributions. The results in this work reveal various collective synchronous states and the mechanism of the transitions among these macroscopic states brought by multiplex coupling. This also conduces to the in-depth understanding of transitions among collective states in other complex systems.
      通信作者: 徐灿, xucan@hqu.edu.cn ; 郑志刚, zgzheng@hqu.edu.cn
      Corresponding author: Xu Can, xucan@hqu.edu.cn ; Zheng Zhi-Gang, zgzheng@hqu.edu.cn
    [1]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization, A Universal Concept in Nonlinear Sciences (New York: Cambridge University Press) pp1−24

    [2]

    Strogatz S 2003 Sync: The Emerging Science of Spontaneous Order (London: Pengiun Press Science) pp103−152

    [3]

    郑志刚 2004 耦合非线性系统的时空动力学与合作行为 (北京: 高等教育出版社) 第53—85页

    Zheng Z G 2004 Space-time Dynamics and Cooperative Behavior of Coupled Nonlinear Systems (Beijing: Higher Education Press) pp53−85 (in Chinese)

    [4]

    Rohen M, Sorge A, Timme M, Witthaut D 2012 Phys. Rev. Lett. 109 064101Google Scholar

    [5]

    Mikhailov A S, Calenbuhr V, 2002 From Cells to Societies: Models of Complex Coherent Action (Berlin Heidelberg: Springer-Verlag) pp127−154

    [6]

    Glass L, Mackay M C 1988 From Clocks to Chaos: The Rhythms of Life (Princeton: Princeton University Press) p10

    [7]

    Montbrió E, Pazó D 2018 Phys. Rev. Lett. 120 244101Google Scholar

    [8]

    吴玉喜, 黄霞, 高建, 郑志刚 2007 56 3803Google Scholar

    Wu Y X, Huang X, Gao J, Zheng Z G 2007 Acta Phys. Sin. 56 3803Google Scholar

    [9]

    Xu C, Gao J, Sun Y, Huang X, Zheng Z G 2015 Sci. Rep. 5 12039Google Scholar

    [10]

    Winfree A T 1967 J. Theor. Biol. 16 15Google Scholar

    [11]

    Kuramoto Y 1975 Self-entrainment of a Population of Coupled Non-linear Oscillators, in: International Symposium on Mathematical Problems in Theoretical Physics (Berlin Heidelberg: Springer-Verlag) pp420−428

    [12]

    Rodrigues F A, Peron M TKD, Ji P, Kurths J 2016 Phys. Rep. 610 1Google Scholar

    [13]

    Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (Berlin Heidelberg: Springer-Verlag) pp60–66

    [14]

    Kuramoto Y, Nishikawa I 1987 J. Stat. Phys. 49 569Google Scholar

    [15]

    郑志刚 2019 复杂系统的涌现动力学: 从同步到集体输运 (北京: 科学出版社) 第95 −176页

    Zheng Z G 2019 Emergence Dynamics in Complex Systems: From Synchronization to Collective Transport (Beijing: Science Press) pp95−176 (in Chinese)

    [16]

    Tanaka T, Aoyagi T 2011 Phys. Rev. Lett. 106 224101Google Scholar

    [17]

    Komarov M, Pikovsky A 2015 Phys. Rev. E 92 020901(R)Google Scholar

    [18]

    Bick C, Ashwin P, Rodrigues A 2016 Chaos 26 094814Google Scholar

    [19]

    Xu C, Xiang H, Gao J, Zheng Z G 2016 Sci. Rep. 6 31133Google Scholar

    [20]

    Millán A P, Torres J J, Bianconi G 2018 Sci. Rep. 8 9910Google Scholar

    [21]

    Millán A P, Torres J J, Bianconi G 2019 Phys. Rev. E 99 022307

    [22]

    Petri G, Expert P, Turkheimer F, Carhart-Harris R, Nutt D, Hellyer P J, Vaccarino F 2014 J. R. Soc. Interface 11 20140873Google Scholar

    [23]

    Giusti C, Ghrist R, Bassett D S 2016 J. Comput. Neurosci. 41 1Google Scholar

    [24]

    Sizemore A E, Giusti C, Kahn A, Vettel J M, Betzel R, Bassett D S 2018 J. Comput. Neurosci. 44 115Google Scholar

    [25]

    Skardal P S, Arenas A 2019 Phys. Rev. Lett. 122 248301Google Scholar

    [26]

    Fell J, Axmacher N 2011 Nat. Rev. Neurosci. 12 105Google Scholar

    [27]

    Skardal P S, Ott E, Restrepo J G 2011 Phys. Rev. E 84 036208Google Scholar

    [28]

    Wang J W, Rong L L, Deng Q H, Zhang J Y 2010 Eur. Phys. J. B 77 493Google Scholar

    [29]

    Zheng Z G, Hu G, Hu B 1998 Phys. Rev. Lett. 81 5318Google Scholar

    [30]

    朱廷祥, 吴晔, 肖井华 2012 62 040502Google Scholar

    Zhu T X, Wu Y, Xiao J H 2012 Acta Phys. Sin. 62 040502Google Scholar

    [31]

    Daido H 1996 Phys. Rev. Lett. 77 1406Google Scholar

    [32]

    Crawford J D 1994 J. Statist.Phys. 74 1047Google Scholar

    [33]

    郑志刚, 翟云 2020 中国科学: 物理学 力学 天文学 50 010505Google Scholar

    Zheng Z G, Zhai Y 2020 Sci. Sin. Phys., Mech. Astron. 50 010505Google Scholar

    [34]

    Komarov M, Pikovsky A 2013 Phys. Rev. Lett. 111 204101Google Scholar

    [35]

    Omel’chenko O E, Wolfrum M 2012 Phys. Rev. Lett. 109 164101Google Scholar

    [36]

    Omel’chenko O E, Wolfrum M 2013 Physica D 263 74Google Scholar

    [37]

    Xu C, Wang X B, Skardal P S 2020 Phys. Rev. Res. 2 023281

  • 图 1  系统序参量随耦合强度K的变化曲线, 箭头表示耦合强度绝热变化的方向 (a)${R_1}$; (b)${R_2}$

    Fig. 1.  Relation between the order parameter ${R_{1, 2}}$((a), (b)) and the coupling strength K. Arrows denote the direction of the adiabatic change of the coupling K: (a)${R_1}$; (b)${R_2}$.

    图 2  (a) 当${\omega _0} = 1$时不同自然频率分布半宽度$\gamma $对应的$f(q)$曲线; (b) 当${\omega _0} = 1$, $\gamma = 0.2$, $\eta = 1$时, $F(q) = (2\eta - 1) f(q)$$G(q) = 1/\sqrt K $两条曲线的交点随着耦合强度K变化的示意图

    Fig. 2.  (a) $f(q)$ curves when ${\omega _0} = 1$; (b) the intersection of curves $F(q) = (2\eta - 1)f(q)$ and $G(q) = 1/\sqrt K $for different couplings K, where ${\omega _0} = 1$, $\gamma = 0.2$, $\eta = 1$.

    图 3  自然频率为双峰Lorentz分布且${\omega _0} = 1$时不同分布半宽$\gamma $对应的系统序参量${R_1}$, ${R_2}$随耦合强度K的变化 (a), (d) $\gamma = 0$; (b), (e) $\gamma = 0.5$; (c), (f) $\gamma = 1$. 图中实线和符号标记分别对应于理论预测和数值结果($N = {10^5}$个耦合相振子), 对于每一个$\eta $, 系统的初始相位分别按概率$\eta $$1 - \eta $随机设置为$0$$\pi $

    Fig. 3.  The order parameters ${R_1}$[(a)—(c)] and ${R_2}$[(d)—(f)] varying against the coupling strength K for different γ and ${\omega _0} = 1$, when the natural frequency obeys a bimodal Lorentz distribution: (a), (d) $\gamma = 0$; (b), (e) $\gamma = 0.5$; (c), (f) $\gamma = 1$. Theoretical predictions and numerical results are labeled as solid lines and symbols, respectively ($N = {10^5}$). For every η, the initial phase is set as 0 and π for η and 1–η.

    图 4  $\eta = 1$, ${\omega _0} = 1$, $\gamma = 0$时不同耦合强度K对应的序参量${R_{1, 2}}(t)$的周期振荡图像($N = {10^5}$个耦合振子) (a), (b) $K = 1.5 < {K_{\rm{c}}}$; (c), (d)$K = 0.5 < {K_{\rm{c}}}$

    Fig. 4.  Oscillatory behaviors of the order parameter ${R_{1, 2}}(t)$ for different coupling strengths K, where $\eta = 1$, ${\omega _0} = 1$, $\gamma = 0$, and $N = {10^5}$: (a), (b) $K = 1.5 < {K_{\rm{c}}}$; (c), (d) $K = 0.5 < {K_{\rm{c}}}$.

    图 5  ${\omega _0} = 1$时, 不同m (2m为分布函数峰值的个数)对应的$f(q)$曲线

    Fig. 5.  $ f\left(q\right) $ curves where 2m is the number of peaks of the distribution function for ${\omega _0} = 1$.

    图 6  ${\omega _0} = 1$时, 不同m对应的序参量${R_{1, 2}}$随耦合强度K的变化 (a), (b) m = 2; (c), (d) m = 3. 标记有图形的实线表示数值模拟结果, 黑色虚线表示ADT临界值理论预测结果(40)式

    Fig. 6.  The order parameters ${R_1}$[(a), (c)] and ${R_2}$[(b), (d)] varying against the coupling strength K for different m and ${\omega _0} = 1$: (a), (b) $m = 2$; (c), (d) $m = 3$. Theoretical predictions and numerical results are labeled as solid lines and symbols, respectively. The dotted lines are the theoretical predictions of the critical values of ADT given in (40).

    Baidu
  • [1]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization, A Universal Concept in Nonlinear Sciences (New York: Cambridge University Press) pp1−24

    [2]

    Strogatz S 2003 Sync: The Emerging Science of Spontaneous Order (London: Pengiun Press Science) pp103−152

    [3]

    郑志刚 2004 耦合非线性系统的时空动力学与合作行为 (北京: 高等教育出版社) 第53—85页

    Zheng Z G 2004 Space-time Dynamics and Cooperative Behavior of Coupled Nonlinear Systems (Beijing: Higher Education Press) pp53−85 (in Chinese)

    [4]

    Rohen M, Sorge A, Timme M, Witthaut D 2012 Phys. Rev. Lett. 109 064101Google Scholar

    [5]

    Mikhailov A S, Calenbuhr V, 2002 From Cells to Societies: Models of Complex Coherent Action (Berlin Heidelberg: Springer-Verlag) pp127−154

    [6]

    Glass L, Mackay M C 1988 From Clocks to Chaos: The Rhythms of Life (Princeton: Princeton University Press) p10

    [7]

    Montbrió E, Pazó D 2018 Phys. Rev. Lett. 120 244101Google Scholar

    [8]

    吴玉喜, 黄霞, 高建, 郑志刚 2007 56 3803Google Scholar

    Wu Y X, Huang X, Gao J, Zheng Z G 2007 Acta Phys. Sin. 56 3803Google Scholar

    [9]

    Xu C, Gao J, Sun Y, Huang X, Zheng Z G 2015 Sci. Rep. 5 12039Google Scholar

    [10]

    Winfree A T 1967 J. Theor. Biol. 16 15Google Scholar

    [11]

    Kuramoto Y 1975 Self-entrainment of a Population of Coupled Non-linear Oscillators, in: International Symposium on Mathematical Problems in Theoretical Physics (Berlin Heidelberg: Springer-Verlag) pp420−428

    [12]

    Rodrigues F A, Peron M TKD, Ji P, Kurths J 2016 Phys. Rep. 610 1Google Scholar

    [13]

    Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (Berlin Heidelberg: Springer-Verlag) pp60–66

    [14]

    Kuramoto Y, Nishikawa I 1987 J. Stat. Phys. 49 569Google Scholar

    [15]

    郑志刚 2019 复杂系统的涌现动力学: 从同步到集体输运 (北京: 科学出版社) 第95 −176页

    Zheng Z G 2019 Emergence Dynamics in Complex Systems: From Synchronization to Collective Transport (Beijing: Science Press) pp95−176 (in Chinese)

    [16]

    Tanaka T, Aoyagi T 2011 Phys. Rev. Lett. 106 224101Google Scholar

    [17]

    Komarov M, Pikovsky A 2015 Phys. Rev. E 92 020901(R)Google Scholar

    [18]

    Bick C, Ashwin P, Rodrigues A 2016 Chaos 26 094814Google Scholar

    [19]

    Xu C, Xiang H, Gao J, Zheng Z G 2016 Sci. Rep. 6 31133Google Scholar

    [20]

    Millán A P, Torres J J, Bianconi G 2018 Sci. Rep. 8 9910Google Scholar

    [21]

    Millán A P, Torres J J, Bianconi G 2019 Phys. Rev. E 99 022307

    [22]

    Petri G, Expert P, Turkheimer F, Carhart-Harris R, Nutt D, Hellyer P J, Vaccarino F 2014 J. R. Soc. Interface 11 20140873Google Scholar

    [23]

    Giusti C, Ghrist R, Bassett D S 2016 J. Comput. Neurosci. 41 1Google Scholar

    [24]

    Sizemore A E, Giusti C, Kahn A, Vettel J M, Betzel R, Bassett D S 2018 J. Comput. Neurosci. 44 115Google Scholar

    [25]

    Skardal P S, Arenas A 2019 Phys. Rev. Lett. 122 248301Google Scholar

    [26]

    Fell J, Axmacher N 2011 Nat. Rev. Neurosci. 12 105Google Scholar

    [27]

    Skardal P S, Ott E, Restrepo J G 2011 Phys. Rev. E 84 036208Google Scholar

    [28]

    Wang J W, Rong L L, Deng Q H, Zhang J Y 2010 Eur. Phys. J. B 77 493Google Scholar

    [29]

    Zheng Z G, Hu G, Hu B 1998 Phys. Rev. Lett. 81 5318Google Scholar

    [30]

    朱廷祥, 吴晔, 肖井华 2012 62 040502Google Scholar

    Zhu T X, Wu Y, Xiao J H 2012 Acta Phys. Sin. 62 040502Google Scholar

    [31]

    Daido H 1996 Phys. Rev. Lett. 77 1406Google Scholar

    [32]

    Crawford J D 1994 J. Statist.Phys. 74 1047Google Scholar

    [33]

    郑志刚, 翟云 2020 中国科学: 物理学 力学 天文学 50 010505Google Scholar

    Zheng Z G, Zhai Y 2020 Sci. Sin. Phys., Mech. Astron. 50 010505Google Scholar

    [34]

    Komarov M, Pikovsky A 2013 Phys. Rev. Lett. 111 204101Google Scholar

    [35]

    Omel’chenko O E, Wolfrum M 2012 Phys. Rev. Lett. 109 164101Google Scholar

    [36]

    Omel’chenko O E, Wolfrum M 2013 Physica D 263 74Google Scholar

    [37]

    Xu C, Wang X B, Skardal P S 2020 Phys. Rev. Res. 2 023281

  • [1] 张秀芳, 马军, 徐莹, 任国栋. 光电管耦合FitzHugh-Nagumo神经元的同步.  , 2021, 70(9): 090502. doi: 10.7498/aps.70.20201953
    [2] 蔡宗楷, 徐灿, 郑志刚. 高阶耦合相振子系统的同步动力学.  , 2021, 70(22): 220501. doi: 10.7498/aps.70.20211206
    [3] 郑志刚, 翟云, 王学彬, 陈宏斌, 徐灿. 耦合相振子系统同步的序参量理论.  , 2020, 69(8): 080502. doi: 10.7498/aps.69.20191968
    [4] 舒睿, 陈伟, 肖井华. 多个耦合星型网络的同步优化.  , 2019, 68(18): 180503. doi: 10.7498/aps.68.20190308
    [5] 黄霞, 徐灿, 孙玉庭, 高健, 郑志刚. 耦合振子系统的多稳态同步分析.  , 2015, 64(17): 170504. doi: 10.7498/aps.64.170504
    [6] 吴望生, 唐国宁. 不同耦合下混沌神经元网络的同步.  , 2012, 61(7): 070505. doi: 10.7498/aps.61.070505
    [7] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步.  , 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [8] 胡文, 李俊平, 张弓, 刘文波, 赵广浩. 自调频混沌系统及其调频码耦合同步.  , 2012, 61(1): 010504. doi: 10.7498/aps.61.010504
    [9] 吕翎, 李钢, 张檬, 李雨珊, 韦琳玲, 于淼. 全局耦合网络的参量辨识与时空混沌同步.  , 2011, 60(9): 090505. doi: 10.7498/aps.60.090505
    [10] 何国光, 朱萍, 陈宏平, 谢小平. 阈值耦合混沌神经元的同步研究.  , 2010, 59(8): 5307-5312. doi: 10.7498/aps.59.5307
    [11] 裴利军, 邱本花. 模态分解法在非恒同耦合系统同步研究中的推广.  , 2010, 59(1): 164-170. doi: 10.7498/aps.59.164
    [12] 吕翎, 李钢, 商锦玉, 沈娜, 张新, 柳爽, 朱佳博. 最近邻耦合网络的时空混沌同步研究.  , 2010, 59(9): 5966-5971. doi: 10.7498/aps.59.5966
    [13] 卞秋香, 姚洪兴. 非线性耦合多重边赋权复杂网络的同步.  , 2010, 59(5): 3027-3034. doi: 10.7498/aps.59.3027
    [14] 敬晓丹, 吕翎. 非线性耦合完全网络的时空混沌同步.  , 2009, 58(11): 7539-7543. doi: 10.7498/aps.58.7539
    [15] 吕 翎, 李 钢, 柴 元. 单向耦合映象格子的时空混沌同步.  , 2008, 57(12): 7517-7521. doi: 10.7498/aps.57.7517
    [16] 王兴元, 武相军. 耦合发电机系统的自适应控制与同步.  , 2006, 55(10): 5077-5082. doi: 10.7498/aps.55.5077
    [17] 钱 郁, 宋宣玉, 时 伟, 陈光旨, 薛 郁. 可激发介质湍流的耦合同步及控制.  , 2006, 55(9): 4420-4427. doi: 10.7498/aps.55.4420
    [18] 吴 王莹, 徐健学, 何岱海, 靳伍银. 两个非耦合Hindmarsh-Rose神经元同步的非线性特征研究.  , 2005, 54(7): 3457-3464. doi: 10.7498/aps.54.3457
    [19] 于洪洁, 刘延柱. 对称非线性耦合混沌系统的同步.  , 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [20] 张旭, 沈柯. 时空混沌的单向耦合同步.  , 2002, 51(12): 2702-2706. doi: 10.7498/aps.51.2702
计量
  • 文章访问数:  9532
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-15
  • 修回日期:  2020-05-14
  • 上网日期:  2020-05-25
  • 刊出日期:  2020-09-05

/

返回文章
返回
Baidu
map