-
We propose an approach to measuring non-Markovianity of an open two-level system from quantum coherence perspective including l1 norm of coherence and quantum relative entropy of coherence, and derive corresponding non-Markovian conditions. Further, as a particular application, non-Markovian conditions of an open two-level system undergoing phase damping channel, random unitary channel and amplitude damping channel, respectively are investigated. Specifically speaking, for the three channels we obtain non-Markovian conditions based on l1 norm of coherence at any initial state of system, and find that non-Markovian conditions are the same as the conditions of other measurements, i.e., information back-flow, divisibility and quantum mutual entropy for the phase damping channel and amplitude damping channel, but non-Markovian conditions new and different from the conditions of other measurements for random unitary channel. On the other hand, for phase damping channel we obtain non-Markovian conditions based on quantum relative entropy of coherence at any initial state of system, which are the same as the conditions of other measures, i.e., information back-flow, divisibility and quantum mutual entropy. However, for the random unitary channel and amplitude damping channel we obtain non-Markovian conditions at maximally coherent state of system.
-
Keywords:
- open two-level systems /
- non-Markovianity /
- l1 norm of coherence /
- quantum relative entropy of coherence
[1] Buluta I, Ashhab S, Nori F 2011 Rep. Prog. Phys. 74 104401
[2] Bellomo B, LoFranco R, Compagno G 2007 Phys. Rev. Lett. 99 160502
[3] Zhang Y J, Man Z X, Xia Y J 2009 Eur. Phys. J. D 55 173
[4] Xiao X, Fang M F, Li Y L, Zeng K, Wu C 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235502
[5] Xiao X, Fang M F, Li Y L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 185505
[6] Han W, Cui W K, Zhang Y J, Xia Y J 2012 Acta Phys. Sin. 61 230302 (in Chinese) [韩伟, 崔文凯, 张英杰, 夏云杰 2012 61 230302]
[7] Shan C J, Liu J B, Chen T, Liu T K, Huang Y X, Li H 2010 Chin. Phys. Lett. 27 100301
[8] Xiao X, Fang M F, Li Y L, Kang G D, Wu C 2010 Opt. Commun. 283 3001
[9] Li C F, Wang H T, Yuan H Y, Ge R C, Guo G C 2011 Chin. Phys. Lett. 28 120302
[10] Han W, Zhang Y J, Xia Y J 2013 Chin. Phys. B 22 010306
[11] He Z, Li L W 2013 Acta Phys. Sin. 62 180301 (in Chinese) [贺志, 李龙武 2013 62 180301]
[12] Zheng L M, Wang F Q, Liu S H 2009 Acta Phys. Sin. 58 2430 (in Chinese) [郑力明, 王发强, 刘颂豪 2009 58 2430]
[13] Xiao X, Fang M F, Hu Y M 2011 Phys. Scr. 84 045011
[14] Cai C J, Fang M F, Xiao X, Huang J 2012 Acta Phys. Sin. 61 210303 (in Chinese) [蔡诚俊, 方卯发, 肖兴, 黄江 2012 61 210303]
[15] Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401
[16] Rivas A, Huelga S F, Plenio M B 2010 Phys. Rev. Lett. 105 050403
[17] Lu X M, Wang X G, Sun C P 2010 Phys. Rev. A 82 042103
[18] Hou S C, Yi X X, Yu S X, Oh C H 2011 Phys. Rev. A 83 062115
[19] Luo S, Fu S, Song H 2012 Phys. Rev. A 86 044101
[20] Lorenzo S, Plastina F, Paternostro M 2013 Phys. Rev. A 88 020102
[21] Bylicka B, Chruscinski D, Maniscalco S 2014 Sci. Rep. 4 5720
[22] Chruscinski D, Maniscalco 2014 Phys. Rev. A 112 120404
[23] Liu J, Lu X M, Wang X G 2013 Phys. Rev. A 87 042103
[24] He Z, Yao C, Zou J 2014 Phys. Rev. A 90 042101
[25] Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P, Piilo J 2011 Nat. Phys. 7 931
[26] Tang J S, Li C F, Li Y L, Zou X B, Guo G C 2012 Europhys. Lett. 97 10002
[27] Xu Z Y, Yang W L, Feng M 2010 Phys. Rev. A 81 044105
[28] He Z, Zou J, Li L, Shao B 2011 Phys. Rev. A 83 012108
[29] Zeng H S, Tang N, Zheng Y P, Wang G Y 2011 Phys. Rev. A 84 032118
[30] Haikka P, Cresser J D, Maniscalco S 2011 Phys. Rev. A 83 012112.
[31] Chruscinski D, Wudarski F 2013 Phys. Lett. A 377 1425
[32] Jiang M, Luo S 2013 Phys. Rev. A 88 034101
[33] Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401
[34] Girolami D 2014 Phys. Rev. Lett. 113 170401
[35] Lindblad G 1975 Commun. Math. Phys. 40 147
[36] Ruskai M B 2002 J. Math. Phys. 43 4358
[37] Vedral V, Plenio M B 1997 Phys. Rev. A 57 1619
[38] Wolf M M, Eisert J, Cubitt T S, Cirac J I 2008 Phys. Rev. Lett. 101 150402
[39] Shao L H, Xi Z J, Fan H, Li Y M 2015 Phys. Rev. A 91 042120
[40] Breuer H P, Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) p472
[41] Vacchini B 2012 J. Phys. B: At. Mol. Opt. Phys. 45 154007
[42] Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401
[43] Xi Z J, Li Y M, Fan H 2014 arXiv 1408.3194v2 [quant-ph]
[44] Du S, Bei Z, Guo Y 2015 Phys. Rev. A 91 052120
[45] Bromley T R, Cianciaruso M, Adesso G 2015 Phys. Rev. Lett. 114 210401
[46] Zhang Y J, Han W, Xia Y J, Yu Y M, Fan H 2015 arXiv 1502.02446v1 [quant-ph]
-
[1] Buluta I, Ashhab S, Nori F 2011 Rep. Prog. Phys. 74 104401
[2] Bellomo B, LoFranco R, Compagno G 2007 Phys. Rev. Lett. 99 160502
[3] Zhang Y J, Man Z X, Xia Y J 2009 Eur. Phys. J. D 55 173
[4] Xiao X, Fang M F, Li Y L, Zeng K, Wu C 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235502
[5] Xiao X, Fang M F, Li Y L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 185505
[6] Han W, Cui W K, Zhang Y J, Xia Y J 2012 Acta Phys. Sin. 61 230302 (in Chinese) [韩伟, 崔文凯, 张英杰, 夏云杰 2012 61 230302]
[7] Shan C J, Liu J B, Chen T, Liu T K, Huang Y X, Li H 2010 Chin. Phys. Lett. 27 100301
[8] Xiao X, Fang M F, Li Y L, Kang G D, Wu C 2010 Opt. Commun. 283 3001
[9] Li C F, Wang H T, Yuan H Y, Ge R C, Guo G C 2011 Chin. Phys. Lett. 28 120302
[10] Han W, Zhang Y J, Xia Y J 2013 Chin. Phys. B 22 010306
[11] He Z, Li L W 2013 Acta Phys. Sin. 62 180301 (in Chinese) [贺志, 李龙武 2013 62 180301]
[12] Zheng L M, Wang F Q, Liu S H 2009 Acta Phys. Sin. 58 2430 (in Chinese) [郑力明, 王发强, 刘颂豪 2009 58 2430]
[13] Xiao X, Fang M F, Hu Y M 2011 Phys. Scr. 84 045011
[14] Cai C J, Fang M F, Xiao X, Huang J 2012 Acta Phys. Sin. 61 210303 (in Chinese) [蔡诚俊, 方卯发, 肖兴, 黄江 2012 61 210303]
[15] Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401
[16] Rivas A, Huelga S F, Plenio M B 2010 Phys. Rev. Lett. 105 050403
[17] Lu X M, Wang X G, Sun C P 2010 Phys. Rev. A 82 042103
[18] Hou S C, Yi X X, Yu S X, Oh C H 2011 Phys. Rev. A 83 062115
[19] Luo S, Fu S, Song H 2012 Phys. Rev. A 86 044101
[20] Lorenzo S, Plastina F, Paternostro M 2013 Phys. Rev. A 88 020102
[21] Bylicka B, Chruscinski D, Maniscalco S 2014 Sci. Rep. 4 5720
[22] Chruscinski D, Maniscalco 2014 Phys. Rev. A 112 120404
[23] Liu J, Lu X M, Wang X G 2013 Phys. Rev. A 87 042103
[24] He Z, Yao C, Zou J 2014 Phys. Rev. A 90 042101
[25] Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P, Piilo J 2011 Nat. Phys. 7 931
[26] Tang J S, Li C F, Li Y L, Zou X B, Guo G C 2012 Europhys. Lett. 97 10002
[27] Xu Z Y, Yang W L, Feng M 2010 Phys. Rev. A 81 044105
[28] He Z, Zou J, Li L, Shao B 2011 Phys. Rev. A 83 012108
[29] Zeng H S, Tang N, Zheng Y P, Wang G Y 2011 Phys. Rev. A 84 032118
[30] Haikka P, Cresser J D, Maniscalco S 2011 Phys. Rev. A 83 012112.
[31] Chruscinski D, Wudarski F 2013 Phys. Lett. A 377 1425
[32] Jiang M, Luo S 2013 Phys. Rev. A 88 034101
[33] Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401
[34] Girolami D 2014 Phys. Rev. Lett. 113 170401
[35] Lindblad G 1975 Commun. Math. Phys. 40 147
[36] Ruskai M B 2002 J. Math. Phys. 43 4358
[37] Vedral V, Plenio M B 1997 Phys. Rev. A 57 1619
[38] Wolf M M, Eisert J, Cubitt T S, Cirac J I 2008 Phys. Rev. Lett. 101 150402
[39] Shao L H, Xi Z J, Fan H, Li Y M 2015 Phys. Rev. A 91 042120
[40] Breuer H P, Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) p472
[41] Vacchini B 2012 J. Phys. B: At. Mol. Opt. Phys. 45 154007
[42] Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401
[43] Xi Z J, Li Y M, Fan H 2014 arXiv 1408.3194v2 [quant-ph]
[44] Du S, Bei Z, Guo Y 2015 Phys. Rev. A 91 052120
[45] Bromley T R, Cianciaruso M, Adesso G 2015 Phys. Rev. Lett. 114 210401
[46] Zhang Y J, Han W, Xia Y J, Yu Y M, Fan H 2015 arXiv 1502.02446v1 [quant-ph]
Catalog
Metrics
- Abstract views: 6877
- PDF Downloads: 397
- Cited By: 0