Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigating quantum coherence from discrete Wigner function

Lin Yin Huang Ming-Da Yu Ya-Fei Zhang Zhi-Ming

Citation:

Investigating quantum coherence from discrete Wigner function

Lin Yin, Huang Ming-Da, Yu Ya-Fei, Zhang Zhi-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum coherence is an essential ingredient in quantum information processing and plays an important role in quantum computation. Therefore, it is a hot issue about how to quantify the coherence of quantum states in theoretical framework. The coherence effect of a state is usually described by the off-diagonal elements of its density matrix with respect to a particular reference basis. Recently, based on the established notions from quantitative theory of entanglement, a resource theory of coherence quantification has been proposed[1,2]. In the theory framework, a proper measure of coherence should satisfy three criteria: the coherence should be zero for all incoherent state; the coherence should not increase under mixing quantum states; the coherence should not increase under incoherent operations. Then, a number of coherence measures have been suggested, such as l1 norm of coherence and the relative entropy of coherence[2]. Wigner function is known as an important tool to study the non-classical property of quantum states for continuous-variable quantum systems. It has been generalized to finite-dimensional Hilbert spaces, and named as discrete Wigner function[9-16]. The magic property of quantum states, which promotes stabilizer computation to universal quantum computation, can be generally measured by the absolute sum of the negative items (negativity sum) in the discrete Wigner function of the observed quantum states. In this paper we investigate quantum coherence from the view of discrete Wigner function. From the definition of the discrete Wigner function of the quantum systems with odd prime dimensions, for a given density matrix we analyze in phase space the performance of its diagonal and off-diagonal items. We find that, the discrete Wigner function of a quantum state contains two aspects: the true quantum coherence and the classical mixture, where the part of classical mixture can be excluded by only considering the discrete Wigner function of the diagonal items of the density matrix. Thus, we propose a possible measure method for quantum coherence from the discrete Wigner function of the off-diagonal items of the density matrix. We show that the proposed measure method satisfies the criteria (C1) and (C2) of coherence measure perfectly. For the criteria (C3), we give a numerical proof in three-dimensional quantum system. Meanwhile, we compare the proposed coherence measure with l1 norm coherence, and get an inequality relationship between them. Finally, an inequality is obtained to discuss the relation between quantum coherence and the negativity sum of discrete Wigner function, which shows that the quantum coherence is only necessary but not sufficient for quantum computation speed-up.
      Corresponding author: Yu Ya-Fei, yfyuks@hotmail.com
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 11574092, 61378012, 60978009), the National Basic Research Program of China (Grant No. 2013CB921804), and the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1243).
    [1]

    Aberg J 2006 arXiv:quant-ph/0612146v1

    [2]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401

    [3]

    Girolami D 2014 Phys. Rev. Lett. 113 170401

    [4]

    Streltsov A, Singh U, Dhar H S, Bera M N, Adesso G 2015 Phys. Rev. Lett. 115 020403

    [5]

    Yuan X, Zhou H Y, Cao Z, Ma X F 2015 Phys. Rev. A 92 022124

    [6]

    Shao L H, Xi Z J, Fan H, Li Y M 2015 Phys. Rev. A 91 042120

    [7]

    Xi Z J, Li Y M, Fan H 2015 Sci. Rep. 5 10922

    [8]

    Yao Y, Xiao X, Ge L, Sun C P 2015 Phys. Rev. A 92 022112

    [9]

    Wootters W K 1987 Ann. Phys. 176 1

    [10]

    Gibbons K S, Hoffman M J, Wootters W K 2004 Phys. Rev. A 70 062101

    [11]

    Cormick C, Galvao E F, Gottesman D, Paz J P, Pittenger A O 2006 Phys. Rev. A 73 012301

    [12]

    Galvao E F 2005 Phys. Rev. A 71 042302

    [13]

    Buot F A 1974 Phys. Rev. B 10 3700

    [14]

    Gross D 2006 J. Math. Phys. 47 122107

    [15]

    Baron T 2009 EPL 88 10002

    [16]

    Zhu H J 2016 Phys. Rev. Lett. 116 040501

    [17]

    Veitch V, Ferrie C, Gross D, Emerson J 2012 New J. Phys. 14 113011

    [18]

    Veitch V, Mousavian S A H, Gottesman D, Emerson J 2014 New J. Phys. 16 013009

    [19]

    Galvao E F 2005 Phys. Rev. A 71 042302

    [20]

    Mari A, Eisert J 2012 Phys. Rev. Lett. 109 230503

    [21]

    Pashayan H, Wallman J J, Bartlett S D 2015 Phys. Rev. Lett. 115 070501

    [22]

    Zhang Z M 2015 Quantum Optics (Beijing: Science Press) pp111-116 (in Chinese) [张智明 2015 量子光学 (北京: 科学出版社) 第111-116页]

    [23]

    Vedral V, Plenio M B 1998 Phys. Rev. A 57 1619

    [24]

    Plenio M B, Virmani S 2007 Quantum Inf. Comput. 7 1

    [25]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [26]

    Lee C W, Jeong H 2011 Phys. Rev. Lett. 106 220401

    [27]

    Cormick C, Paz J P 2006 Phys. Rev. A 74 062315

    [28]

    Thew R T, Nemoto K, White A G, Munro W J 2002 Phys. Rev. A 66 012303

  • [1]

    Aberg J 2006 arXiv:quant-ph/0612146v1

    [2]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401

    [3]

    Girolami D 2014 Phys. Rev. Lett. 113 170401

    [4]

    Streltsov A, Singh U, Dhar H S, Bera M N, Adesso G 2015 Phys. Rev. Lett. 115 020403

    [5]

    Yuan X, Zhou H Y, Cao Z, Ma X F 2015 Phys. Rev. A 92 022124

    [6]

    Shao L H, Xi Z J, Fan H, Li Y M 2015 Phys. Rev. A 91 042120

    [7]

    Xi Z J, Li Y M, Fan H 2015 Sci. Rep. 5 10922

    [8]

    Yao Y, Xiao X, Ge L, Sun C P 2015 Phys. Rev. A 92 022112

    [9]

    Wootters W K 1987 Ann. Phys. 176 1

    [10]

    Gibbons K S, Hoffman M J, Wootters W K 2004 Phys. Rev. A 70 062101

    [11]

    Cormick C, Galvao E F, Gottesman D, Paz J P, Pittenger A O 2006 Phys. Rev. A 73 012301

    [12]

    Galvao E F 2005 Phys. Rev. A 71 042302

    [13]

    Buot F A 1974 Phys. Rev. B 10 3700

    [14]

    Gross D 2006 J. Math. Phys. 47 122107

    [15]

    Baron T 2009 EPL 88 10002

    [16]

    Zhu H J 2016 Phys. Rev. Lett. 116 040501

    [17]

    Veitch V, Ferrie C, Gross D, Emerson J 2012 New J. Phys. 14 113011

    [18]

    Veitch V, Mousavian S A H, Gottesman D, Emerson J 2014 New J. Phys. 16 013009

    [19]

    Galvao E F 2005 Phys. Rev. A 71 042302

    [20]

    Mari A, Eisert J 2012 Phys. Rev. Lett. 109 230503

    [21]

    Pashayan H, Wallman J J, Bartlett S D 2015 Phys. Rev. Lett. 115 070501

    [22]

    Zhang Z M 2015 Quantum Optics (Beijing: Science Press) pp111-116 (in Chinese) [张智明 2015 量子光学 (北京: 科学出版社) 第111-116页]

    [23]

    Vedral V, Plenio M B 1998 Phys. Rev. A 57 1619

    [24]

    Plenio M B, Virmani S 2007 Quantum Inf. Comput. 7 1

    [25]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [26]

    Lee C W, Jeong H 2011 Phys. Rev. Lett. 106 220401

    [27]

    Cormick C, Paz J P 2006 Phys. Rev. A 74 062315

    [28]

    Thew R T, Nemoto K, White A G, Munro W J 2002 Phys. Rev. A 66 012303

  • [1] Guo Mu-Cheng, Wang Fu-Dong, Hu Zhao-Gao, Ren Miao-Miao, Sun Wei-Ye, Xiao Wan-Ting, Liu Shu-Ping, Zhong Man-Jin. Research progress of quantum coherence performance and applications of micro/nano scale rare-earth doped crystals. Acta Physica Sinica, 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [2] Yu Juan, Zhang Yan, Wu Yin-Hua, Yang Wen-Hai, Yan Zhi-Hui, Jia Xiao-Jun. Experimental demonstration on quantum coherence evolution of two-mode squeezed state. Acta Physica Sinica, 2023, 72(3): 034202. doi: 10.7498/aps.72.20221923
    [3] Dong Yao, Ji Ai-Ling, Zhang Guo-Feng. Evolution of quantum coherence of qutrit-qutrit system under correlated depolarizing channels. Acta Physica Sinica, 2022, 71(7): 070303. doi: 10.7498/aps.71.20212067
    [4] Yang Yang, Wang An-Min, Cao Lian-Zhen, Zhao Jia-Qiang, Lu Huai-Xin. Correlation and coherence for two-qubit system coupled to XY spin chains. Acta Physica Sinica, 2018, 67(15): 150302. doi: 10.7498/aps.67.20180812
    [5] Yi Tian-Cheng, Ding Yue-Ran, Ren Jie, Wang Yi-Min, You Wen-Long. Quantum coherence of XY model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2018, 67(14): 140303. doi: 10.7498/aps.67.20172755
    [6] Ye Shi-Qiang, Chen Xiao-Yu. Four-partite Bell inequalities based on quantum coherence. Acta Physica Sinica, 2017, 66(20): 200301. doi: 10.7498/aps.66.200301
    [7] Fan Hong-Yi, Liang Zu-Feng. An integral-transformation corresponding to quantum mechanical fundamental commutative relation and its application in deriving Wigner function. Acta Physica Sinica, 2015, 64(5): 050301. doi: 10.7498/aps.64.050301
    [8] He Zhi, Li Li, Yao Chun-Mei, Li Yan. Non-Markovianity of open two-level system by means of quantum coherence. Acta Physica Sinica, 2015, 64(14): 140302. doi: 10.7498/aps.64.140302
    [9] Xu Xue-Xiang, Zhang Ying-Kong, Zhang Hao-Liang, Chen Yuan-Yuan. Wigner function of N00N state and quantum interference with N00N state as input. Acta Physica Sinica, 2013, 62(11): 114204. doi: 10.7498/aps.62.114204
    [10] Jin Ai-Jun, Wang Ze-Feng, Hou Jing, Guo Liang, Jiang Zong-Fu, Xiao Rui. Coherence properties of supercontinuum quantified by complex degree of self-coherence. Acta Physica Sinica, 2012, 61(15): 154201. doi: 10.7498/aps.61.154201
    [11] Song Jun, Fan Hong-Yi. Properties of Wigner function of spin coherent states based on Schwinger Bose operator realization. Acta Physica Sinica, 2010, 59(10): 6806-6813. doi: 10.7498/aps.59.6806
    [12] Lan Hai-Jiang, Pang Hua-Feng, Wei Lian-Fu. Wigner functions of multiple-photon excited coherent states. Acta Physica Sinica, 2009, 58(12): 8281-8288. doi: 10.7498/aps.58.8281
    [13] Ye Chen-Guang, Zhang Jing. Generation of squeezed vacuum states by PPKTP crystal and its Wigner quasi-probability distribution function reconstruction. Acta Physica Sinica, 2008, 57(11): 6962-6967. doi: 10.7498/aps.57.6962
    [14] Meng Xiang-Guo, Wang Ji-Suo, Liang Bao-Long. Wigner function for the photon-added even and odd coherent state. Acta Physica Sinica, 2007, 56(4): 2160-2167. doi: 10.7498/aps.56.2160
    [15] Yang Qing-Yi, Sun Jing-Wen, Wei Lian-Fu, Ding Liang-En. Wigner functions for the photon-added and photon-depleted even and odd coherent states. Acta Physica Sinica, 2005, 54(6): 2704-2709. doi: 10.7498/aps.54.2704
    [16] Guo Ru-Hai, Shi Hong-Yan, Sun Xiu-Dong. The calculation of strain distribution in quantum dots with Green method. Acta Physica Sinica, 2004, 53(10): 3487-3492. doi: 10.7498/aps.53.3487
    [17] Hao San-Ru, Wang Lu-Ya. . Acta Physica Sinica, 2000, 49(4): 610-614. doi: 10.7498/aps.49.610
    [18] YIN JIAN-PING, ZHU SHI-QUN, GAO WEI-JIAN, WANG YU-ZHU. . Acta Physica Sinica, 1995, 44(1): 72-79. doi: 10.7498/aps.44.72
    [19] NI GUANG-JIONG, CHEN SU-QING, ZHOU GU-SHENG. THE COHERENCE OF RADIATION AND INCREASE IN ENTROPY. Acta Physica Sinica, 1982, 31(5): 585-603. doi: 10.7498/aps.31.585
    [20] WANG CHIH-CHIANG. COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION. Acta Physica Sinica, 1963, 19(5): 320-335. doi: 10.7498/aps.19.320
Metrics
  • Abstract views:  6173
  • PDF Downloads:  323
  • Cited By: 0
Publishing process
  • Received Date:  29 November 2016
  • Accepted Date:  01 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map