搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从离散Wigner函数的角度探讨量子相干性度量

林银 黄明达 於亚飞 张智明

引用本文:
Citation:

从离散Wigner函数的角度探讨量子相干性度量

林银, 黄明达, 於亚飞, 张智明

Investigating quantum coherence from discrete Wigner function

Lin Yin, Huang Ming-Da, Yu Ya-Fei, Zhang Zhi-Ming
PDF
导出引用
  • 量子相干性是量子信息处理的基本要素,在量子计算中扮演着重要的角色.为了便于讨论量子相干性在量子计算中的作用,本文从离散Wigner函数角度对量子相干性进行了探讨.首先对奇素数维量子系统的离散Wigner函数进行了分析,分离出表征相干性的部分,提出了一种可能的基于离散Wigner函数的量子相干性度量方法,并对其进行了量子相干性度量规范的分析;同时也比较了该度量与l1范数相干性度量之间的关系.重要的是,这种度量方法能够明确给出量子相干性程度与衡量量子态量子计算加速能力的负性和之间不等式关系,由此可以解析地解释量子相干性仅是量子计算加速的必要条件.
    Quantum coherence is an essential ingredient in quantum information processing and plays an important role in quantum computation. Therefore, it is a hot issue about how to quantify the coherence of quantum states in theoretical framework. The coherence effect of a state is usually described by the off-diagonal elements of its density matrix with respect to a particular reference basis. Recently, based on the established notions from quantitative theory of entanglement, a resource theory of coherence quantification has been proposed[1,2]. In the theory framework, a proper measure of coherence should satisfy three criteria: the coherence should be zero for all incoherent state; the coherence should not increase under mixing quantum states; the coherence should not increase under incoherent operations. Then, a number of coherence measures have been suggested, such as l1 norm of coherence and the relative entropy of coherence[2]. Wigner function is known as an important tool to study the non-classical property of quantum states for continuous-variable quantum systems. It has been generalized to finite-dimensional Hilbert spaces, and named as discrete Wigner function[9-16]. The magic property of quantum states, which promotes stabilizer computation to universal quantum computation, can be generally measured by the absolute sum of the negative items (negativity sum) in the discrete Wigner function of the observed quantum states. In this paper we investigate quantum coherence from the view of discrete Wigner function. From the definition of the discrete Wigner function of the quantum systems with odd prime dimensions, for a given density matrix we analyze in phase space the performance of its diagonal and off-diagonal items. We find that, the discrete Wigner function of a quantum state contains two aspects: the true quantum coherence and the classical mixture, where the part of classical mixture can be excluded by only considering the discrete Wigner function of the diagonal items of the density matrix. Thus, we propose a possible measure method for quantum coherence from the discrete Wigner function of the off-diagonal items of the density matrix. We show that the proposed measure method satisfies the criteria (C1) and (C2) of coherence measure perfectly. For the criteria (C3), we give a numerical proof in three-dimensional quantum system. Meanwhile, we compare the proposed coherence measure with l1 norm coherence, and get an inequality relationship between them. Finally, an inequality is obtained to discuss the relation between quantum coherence and the negativity sum of discrete Wigner function, which shows that the quantum coherence is only necessary but not sufficient for quantum computation speed-up.
      通信作者: 於亚飞, yfyuks@hotmail.com
    • 基金项目: 国家自然科学基金重大项目(批准号:91121023)、国家自然科学基金(批准号:11574092,61378012,60978009)、国家重点基础研究发展计划(批准号:2013CB921804)和教育部长江学者和创新团队发展计划(批准号:IRT1243)资助的课题.
      Corresponding author: Yu Ya-Fei, yfyuks@hotmail.com
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 11574092, 61378012, 60978009), the National Basic Research Program of China (Grant No. 2013CB921804), and the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1243).
    [1]

    Aberg J 2006 arXiv:quant-ph/0612146v1

    [2]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401

    [3]

    Girolami D 2014 Phys. Rev. Lett. 113 170401

    [4]

    Streltsov A, Singh U, Dhar H S, Bera M N, Adesso G 2015 Phys. Rev. Lett. 115 020403

    [5]

    Yuan X, Zhou H Y, Cao Z, Ma X F 2015 Phys. Rev. A 92 022124

    [6]

    Shao L H, Xi Z J, Fan H, Li Y M 2015 Phys. Rev. A 91 042120

    [7]

    Xi Z J, Li Y M, Fan H 2015 Sci. Rep. 5 10922

    [8]

    Yao Y, Xiao X, Ge L, Sun C P 2015 Phys. Rev. A 92 022112

    [9]

    Wootters W K 1987 Ann. Phys. 176 1

    [10]

    Gibbons K S, Hoffman M J, Wootters W K 2004 Phys. Rev. A 70 062101

    [11]

    Cormick C, Galvao E F, Gottesman D, Paz J P, Pittenger A O 2006 Phys. Rev. A 73 012301

    [12]

    Galvao E F 2005 Phys. Rev. A 71 042302

    [13]

    Buot F A 1974 Phys. Rev. B 10 3700

    [14]

    Gross D 2006 J. Math. Phys. 47 122107

    [15]

    Baron T 2009 EPL 88 10002

    [16]

    Zhu H J 2016 Phys. Rev. Lett. 116 040501

    [17]

    Veitch V, Ferrie C, Gross D, Emerson J 2012 New J. Phys. 14 113011

    [18]

    Veitch V, Mousavian S A H, Gottesman D, Emerson J 2014 New J. Phys. 16 013009

    [19]

    Galvao E F 2005 Phys. Rev. A 71 042302

    [20]

    Mari A, Eisert J 2012 Phys. Rev. Lett. 109 230503

    [21]

    Pashayan H, Wallman J J, Bartlett S D 2015 Phys. Rev. Lett. 115 070501

    [22]

    Zhang Z M 2015 Quantum Optics (Beijing: Science Press) pp111-116 (in Chinese) [张智明 2015 量子光学 (北京: 科学出版社) 第111-116页]

    [23]

    Vedral V, Plenio M B 1998 Phys. Rev. A 57 1619

    [24]

    Plenio M B, Virmani S 2007 Quantum Inf. Comput. 7 1

    [25]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [26]

    Lee C W, Jeong H 2011 Phys. Rev. Lett. 106 220401

    [27]

    Cormick C, Paz J P 2006 Phys. Rev. A 74 062315

    [28]

    Thew R T, Nemoto K, White A G, Munro W J 2002 Phys. Rev. A 66 012303

  • [1]

    Aberg J 2006 arXiv:quant-ph/0612146v1

    [2]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401

    [3]

    Girolami D 2014 Phys. Rev. Lett. 113 170401

    [4]

    Streltsov A, Singh U, Dhar H S, Bera M N, Adesso G 2015 Phys. Rev. Lett. 115 020403

    [5]

    Yuan X, Zhou H Y, Cao Z, Ma X F 2015 Phys. Rev. A 92 022124

    [6]

    Shao L H, Xi Z J, Fan H, Li Y M 2015 Phys. Rev. A 91 042120

    [7]

    Xi Z J, Li Y M, Fan H 2015 Sci. Rep. 5 10922

    [8]

    Yao Y, Xiao X, Ge L, Sun C P 2015 Phys. Rev. A 92 022112

    [9]

    Wootters W K 1987 Ann. Phys. 176 1

    [10]

    Gibbons K S, Hoffman M J, Wootters W K 2004 Phys. Rev. A 70 062101

    [11]

    Cormick C, Galvao E F, Gottesman D, Paz J P, Pittenger A O 2006 Phys. Rev. A 73 012301

    [12]

    Galvao E F 2005 Phys. Rev. A 71 042302

    [13]

    Buot F A 1974 Phys. Rev. B 10 3700

    [14]

    Gross D 2006 J. Math. Phys. 47 122107

    [15]

    Baron T 2009 EPL 88 10002

    [16]

    Zhu H J 2016 Phys. Rev. Lett. 116 040501

    [17]

    Veitch V, Ferrie C, Gross D, Emerson J 2012 New J. Phys. 14 113011

    [18]

    Veitch V, Mousavian S A H, Gottesman D, Emerson J 2014 New J. Phys. 16 013009

    [19]

    Galvao E F 2005 Phys. Rev. A 71 042302

    [20]

    Mari A, Eisert J 2012 Phys. Rev. Lett. 109 230503

    [21]

    Pashayan H, Wallman J J, Bartlett S D 2015 Phys. Rev. Lett. 115 070501

    [22]

    Zhang Z M 2015 Quantum Optics (Beijing: Science Press) pp111-116 (in Chinese) [张智明 2015 量子光学 (北京: 科学出版社) 第111-116页]

    [23]

    Vedral V, Plenio M B 1998 Phys. Rev. A 57 1619

    [24]

    Plenio M B, Virmani S 2007 Quantum Inf. Comput. 7 1

    [25]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [26]

    Lee C W, Jeong H 2011 Phys. Rev. Lett. 106 220401

    [27]

    Cormick C, Paz J P 2006 Phys. Rev. A 74 062315

    [28]

    Thew R T, Nemoto K, White A G, Munro W J 2002 Phys. Rev. A 66 012303

  • [1] 郭牧城, 汪福东, 胡肇高, 任苗苗, 孙伟业, 肖婉婷, 刘书萍, 钟满金. 微纳尺度稀土掺杂晶体的量子相干性能及其应用研究进展.  , 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [2] 蔚娟, 张岩, 吴银花, 杨文海, 闫智辉, 贾晓军. 双模压缩态量子相干性演化的实验研究.  , 2023, 72(3): 034202. doi: 10.7498/aps.72.20221923
    [3] 董曜, 纪爱玲, 张国锋. 关联退极化量子信道中qutrit-qutrit系统的量子相干性演化.  , 2022, 71(7): 070303. doi: 10.7498/aps.71.20212067
    [4] 杨阳, 王安民, 曹连振, 赵加强, 逯怀新. 与XY双自旋链耦合的双量子比特系统的关联性与相干性.  , 2018, 67(15): 150302. doi: 10.7498/aps.67.20180812
    [5] 伊天成, 丁悦然, 任杰, 王艺敏, 尤文龙. 具有Dzyaloshinskii-Moriya相互作用的XY模型的量子相干性.  , 2018, 67(14): 140303. doi: 10.7498/aps.67.20172755
    [6] 叶世强, 陈小余. 基于量子相干性的四体贝尔不等式构建.  , 2017, 66(20): 200301. doi: 10.7498/aps.66.200301
    [7] 范洪义, 梁祖峰. 相空间中对应量子力学基本对易关系的积分变换及求Wigner函数的新途径.  , 2015, 64(5): 050301. doi: 10.7498/aps.64.050301
    [8] 贺志, 李莉, 姚春梅, 李艳. 利用量子相干性判定开放二能级系统中非马尔可夫性.  , 2015, 64(14): 140302. doi: 10.7498/aps.64.140302
    [9] 徐学翔, 张英孔, 张浩亮, 陈媛媛. N00N态的Wigner函数及N00N态作为输入的量子干涉.  , 2013, 62(11): 114204. doi: 10.7498/aps.62.114204
    [10] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福, 肖瑞. 复自相干度度量超连续谱相干性.  , 2012, 61(15): 154201. doi: 10.7498/aps.61.154201
    [11] 宋军, 范洪义. Schwinger Bose实现下自旋相干态Wigner函数的特性分析.  , 2010, 59(10): 6806-6813. doi: 10.7498/aps.59.6806
    [12] 蓝海江, 庞华锋, 韦联福. 多光子激发相干态的Wigner函数.  , 2009, 58(12): 8281-8288. doi: 10.7498/aps.58.8281
    [13] 叶晨光, 张 靖. 利用PPKTP晶体产生真空压缩态及其Wigner准概率分布函数的量子重构.  , 2008, 57(11): 6962-6967. doi: 10.7498/aps.57.6962
    [14] 孟祥国, 王继锁, 梁宝龙. 增光子奇偶相干态的Wigner函数.  , 2007, 56(4): 2160-2167. doi: 10.7498/aps.56.2160
    [15] 杨庆怡, 孙敬文, 韦联福, 丁良恩. 增、减光子奇偶相干态的Wigner函数.  , 2005, 54(6): 2704-2709. doi: 10.7498/aps.54.2704
    [16] 郭汝海, 时红艳, 孙秀冬. 用格林函数法计算量子点中的应变分布.  , 2004, 53(10): 3487-3492. doi: 10.7498/aps.53.3487
    [17] 郝三如, 王麓雅. 用外加驱动场压缩有热槽相互作用二态量子系统的退相干性.  , 2000, 49(4): 610-614. doi: 10.7498/aps.49.610
    [18] 印建平, 朱士群, 高伟建, 王育竹. 双模激光场的二阶量子相干性及其时谱特性.  , 1995, 44(1): 72-79. doi: 10.7498/aps.44.72
    [19] 倪光炯, 陈苏卿, 周谷声. 辐射的相干性和熵的增加.  , 1982, 31(5): 585-603. doi: 10.7498/aps.31.585
    [20] 王之江. 电磁辐射的相干性.  , 1963, 19(5): 320-335. doi: 10.7498/aps.19.320
计量
  • 文章访问数:  6190
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-29
  • 修回日期:  2017-03-01
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map