Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical analysis of high flow conductivity of a fracture induced in HiWay fracturing

Yan Xia Huang Zhao-Qin Xin Yan-Ping Yao Jun Li Yang Gong Liang

Citation:

Theoretical analysis of high flow conductivity of a fracture induced in HiWay fracturing

Yan Xia, Huang Zhao-Qin, Xin Yan-Ping, Yao Jun, Li Yang, Gong Liang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • HiWay (or channel) fracturing has been a new technology for development of unconventional oil and gas resources in recent years. It has been carried out more than 4000 times worldwide, and obtained good performance in oil and gas recovery. HiWay fracturing improves the flow conductivity of fractures by constructing inhomogeneous distributions of proppant and stable, open flow channel in hydraulic fractures. However, the mechanism and impact factors of high flow conductivity of HiWay fractures are not very clear. To the best of our knowledge, there are no relevant research reports available for such analysis. In this paper, it is first assumed that the fluid flow in proppant clusters follows the Darcy's law and the flow in the channels with proppant clusters is laminar viscous flow, which can be described using Stokes equation. However, the coupling of Darcy-Stokes equations is difficult, and some untrivial interface conditions at the interface between the porous and free-flow regions should be introduced, this will increase greater complexity in numerical computation. As an alternative approach, the Darcy-Brinkman equation is often used for this coupling flow problem, which provides a unified equation with continuous variable coefficients in the two different flow regions. Therefore, there is not necessary to introduce specific interface conditions any more. In this work, we first applied the Darcy-Brinkman equation to model the fluid flow in hydraulic fractures, and then the upscaling of Darcy-Brinkman equation is conducted to evaluate the equivalent permeability of a fracture by using homogenization theory and finite element numerical simulation. Finally, various impact factors of flow conductivity of a hydraulic fracture, such as the cluster shape, cluster distribution, cluster size, etc., are analyzed based on the equivalent permeability. Results show that the permeability of a hydraulic fracture is considerably greater than thst of proppant cluster when the free-flow region is well connected in the fracture, and the geometric properties of proppant clusters are also the key influencing factors for the flow conductivity. Therefore, in HiWay fracturing process, how to construct the well-connected free-flow region in hydraulic fractures is most important, and the flow conductivity of proppant cluster is not the keypoint. However, the surface roughness and stress sensitivity of the hydraulic fractures have not been considered in this work, it will be considered in the future work.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB201004), the National Natural Science Foundation of China (Grant Nos. 51404292, 51234007), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014EEQ010), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. 14CX06091A, 14CX05027A, 13CX05007A, 13CX05017A, 13CX02052A).
    [1]

    Cai B, Ding Y H, Cui Z Q, Yang Z Z, Shen H 2014 Adv. Mater. Res. 941 2521

    [2]

    Tang Y, Tang X, Wang G Y, Zhang Q 2011 Geol. Bull. Chin. 30 393 (in Chinese) [唐颖, 唐玄, 王广源, 张琴 2011 地质通报 30 393]

    [3]

    Gillard M R, Medvedev O, Hosein P R, Medvedev A, Peñacorada F, d'Huteau E 2010 SPE Annual Technical Conference and Exhibition Florence, Italy, September 19-22, 2010 p1 (SPE 135034)

    [4]

    Medvedev A V, Kraemer C C, Pena A A, Panga M K R 2013 SPE Hydraulic Fracturing Technology Conference The Woodlands, Texas, USA February 4-6, 2013 p1 (SPE 163836)

    [5]

    Valdes-Parada F J, Alberto Ochoa-Tapia J, Alvarez-Ramirez J 2007 Physica A: Statistical Mechanics and its Applications 385 69

    [6]

    Lesinigo, Matteo, D'Angelo, Carlo, Quarteroni, Alfio 2011 Numer. Math. 117 717

    [7]

    Joodi A S, Sizaret S, Binet S, Bruand A, Alberic P, Lepiller M 2010 Hydrogeol. J. 18 295

    [8]

    Ng C O, Wang C Y 2010 Transport Porous Med. 85 605

    [9]

    Hornung U 1997 Homogenization and porous media (Vol. 6) Springer pp 1-21

    [10]

    Huang Z Q, Yao J, Li Y J, Wang C C, Lv X R 2010 Sci. China Ser. E 53 839

    [11]

    Oriani F, Renard P 2014 Adv. Water Resour. 64 47

    [12]

    Qu Z L, Ren C Y, Pei Y M, Fang D N 2015 Chin. Phys. B 24 024303

    [13]

    Li M J, Chen L 2011 Chin. Phys. Lett. 28 085203

    [14]

    Zhao G Z, Yu X J, Guo P Y 2013 Chin. Phys. B 22 050206

    [15]

    Wang X C 2003 Finite Element Method (Bei Jing: Tsinghua University Press) pp98-129 (in Chinese) [王勖成 2003 有限单元法(北京: 清华大学出版社)第 98-129 页]

    [16]

    Huang Z Q, Yao J, Wang Y Y 2013 Commun. Comput. Phys. 13 540

    [17]

    Zhang R P, Yu X J, Zhao G Z 2013 Chin. Phys. B 22 030210

    [18]

    Zhou S T, Zhang Q, Li M Z, Wang W Y 2002 Adv. Mech. 32 119 (in Chinese) [周生田, 张琪, 李明忠, 王卫阳 2002 力学进展 32 119]

    [19]

    Zou Y S, Ma X F, Wang L, Lin X 2011 J. Chin. Coal Soc. 36 473 (in Chinese) [邹雨时, 马新仿, 王雷, 林鑫 2011 煤炭学报 36 473]

    [20]

    Wen Q Z, Zhang S C, Li L D 2006 Pet. Geol. &Recovery Efficiency 13 97 (in Chinese) [温庆志, 张士诚, 李林地 2006 油气地质与采收率 13 97]

    [21]

    Laptev V 2003 Ph. D. Dissertation ( Kaiserslautern: University Kaiserslautern)

    [22]

    Khalili S, Dinarvand S, Hosseini R, Tamim H, Pop I 2014 Chin. Phys. B 23 048203

    [23]

    Beavers G S, Joseph D D 1967 J. Fluid Mech. 30 197

    [24]

    Huang Z Q, Gao B, Yao J 2014 Sci. China Ser. G 44 212 (in Chinese) [黄朝琴, 高博, 姚军 2014 中国科学: 物理学, 力学, 天文学 44 212]

    [25]

    Brinkman H C 1949 Appl. Sci. Res. 1 27

    [26]

    Popov P, Efendiev Y C, Qin G 2009 Commun. Comput. Phys. 6 162

    [27]

    Jiang M, Liu H, Huang H 2009 Software Guide 8 175 (in Chinese) [江明, 刘辉, 黄欢 2009 软件导刊 8 175]

  • [1]

    Cai B, Ding Y H, Cui Z Q, Yang Z Z, Shen H 2014 Adv. Mater. Res. 941 2521

    [2]

    Tang Y, Tang X, Wang G Y, Zhang Q 2011 Geol. Bull. Chin. 30 393 (in Chinese) [唐颖, 唐玄, 王广源, 张琴 2011 地质通报 30 393]

    [3]

    Gillard M R, Medvedev O, Hosein P R, Medvedev A, Peñacorada F, d'Huteau E 2010 SPE Annual Technical Conference and Exhibition Florence, Italy, September 19-22, 2010 p1 (SPE 135034)

    [4]

    Medvedev A V, Kraemer C C, Pena A A, Panga M K R 2013 SPE Hydraulic Fracturing Technology Conference The Woodlands, Texas, USA February 4-6, 2013 p1 (SPE 163836)

    [5]

    Valdes-Parada F J, Alberto Ochoa-Tapia J, Alvarez-Ramirez J 2007 Physica A: Statistical Mechanics and its Applications 385 69

    [6]

    Lesinigo, Matteo, D'Angelo, Carlo, Quarteroni, Alfio 2011 Numer. Math. 117 717

    [7]

    Joodi A S, Sizaret S, Binet S, Bruand A, Alberic P, Lepiller M 2010 Hydrogeol. J. 18 295

    [8]

    Ng C O, Wang C Y 2010 Transport Porous Med. 85 605

    [9]

    Hornung U 1997 Homogenization and porous media (Vol. 6) Springer pp 1-21

    [10]

    Huang Z Q, Yao J, Li Y J, Wang C C, Lv X R 2010 Sci. China Ser. E 53 839

    [11]

    Oriani F, Renard P 2014 Adv. Water Resour. 64 47

    [12]

    Qu Z L, Ren C Y, Pei Y M, Fang D N 2015 Chin. Phys. B 24 024303

    [13]

    Li M J, Chen L 2011 Chin. Phys. Lett. 28 085203

    [14]

    Zhao G Z, Yu X J, Guo P Y 2013 Chin. Phys. B 22 050206

    [15]

    Wang X C 2003 Finite Element Method (Bei Jing: Tsinghua University Press) pp98-129 (in Chinese) [王勖成 2003 有限单元法(北京: 清华大学出版社)第 98-129 页]

    [16]

    Huang Z Q, Yao J, Wang Y Y 2013 Commun. Comput. Phys. 13 540

    [17]

    Zhang R P, Yu X J, Zhao G Z 2013 Chin. Phys. B 22 030210

    [18]

    Zhou S T, Zhang Q, Li M Z, Wang W Y 2002 Adv. Mech. 32 119 (in Chinese) [周生田, 张琪, 李明忠, 王卫阳 2002 力学进展 32 119]

    [19]

    Zou Y S, Ma X F, Wang L, Lin X 2011 J. Chin. Coal Soc. 36 473 (in Chinese) [邹雨时, 马新仿, 王雷, 林鑫 2011 煤炭学报 36 473]

    [20]

    Wen Q Z, Zhang S C, Li L D 2006 Pet. Geol. &Recovery Efficiency 13 97 (in Chinese) [温庆志, 张士诚, 李林地 2006 油气地质与采收率 13 97]

    [21]

    Laptev V 2003 Ph. D. Dissertation ( Kaiserslautern: University Kaiserslautern)

    [22]

    Khalili S, Dinarvand S, Hosseini R, Tamim H, Pop I 2014 Chin. Phys. B 23 048203

    [23]

    Beavers G S, Joseph D D 1967 J. Fluid Mech. 30 197

    [24]

    Huang Z Q, Gao B, Yao J 2014 Sci. China Ser. G 44 212 (in Chinese) [黄朝琴, 高博, 姚军 2014 中国科学: 物理学, 力学, 天文学 44 212]

    [25]

    Brinkman H C 1949 Appl. Sci. Res. 1 27

    [26]

    Popov P, Efendiev Y C, Qin G 2009 Commun. Comput. Phys. 6 162

    [27]

    Jiang M, Liu H, Huang H 2009 Software Guide 8 175 (in Chinese) [江明, 刘辉, 黄欢 2009 软件导刊 8 175]

  • [1] Gao Yan-Li, Xu Wei-Nan, Zhou Jie, Chen Shi-Ming. Analysis of seepage behaviour in binary two-layer coupled networks. Acta Physica Sinica, 2024, 73(16): 168901. doi: 10.7498/aps.73.20240454
    [2] Ma Ping, Tian Jing, Tian De-Yang, Zhang Ning, Wu Ming-Xing, Tang Pu. A seven-channels microwave interferometer measurement system for measuring electron density distribution in hypervelocity transient plasma flow. Acta Physica Sinica, 2024, 73(17): 172401. doi: 10.7498/aps.73.20240656
    [3] Ma Jin-Long, Du Chang-Feng, Sui Wei, Xu Xiang-Yang. Data traffic capability of double-layer network based on coupling strength. Acta Physica Sinica, 2020, 69(18): 188901. doi: 10.7498/aps.69.20200181
    [4] Wang De-Xin, Naranmandula. Theoretical study of coupling double-bubbles ultrasonic cavitation characteristics. Acta Physica Sinica, 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [5] Zeng Hui, Zhao Jun. Coupled-cluster single-double theory study on the analytic potential energy function of the SeN2 radicals. Acta Physica Sinica, 2014, 63(6): 063101. doi: 10.7498/aps.63.063101
    [6] Liu Lei, Fei Jian-Fang, Zhang Li-Biao, Huang Xiao-Gang, Cheng Xiao-Ping. New parameterization of wave-current interaction used in a two-way coupled model under typhoon conditions. Acta Physica Sinica, 2012, 61(5): 059201. doi: 10.7498/aps.61.059201
    [7] Wang Yin-Bo, Xue Chi, Feng Qing-Rong. The effects of Ti ion-irradiation on critical current and flux pinning in MgB2 thin film. Acta Physica Sinica, 2012, 61(19): 197401. doi: 10.7498/aps.61.197401
    [8] Chen Yang-Yih, Hsu Hung-Chu, Chang Hsien-Kuo. The irrotational progressive gravity waves propagating on uniform currents in Lagrangian analysis and experiments Part 1. Theoretical analysis. Acta Physica Sinica, 2012, 61(3): 034702. doi: 10.7498/aps.61.034702
    [9] Shi De-Heng, Zhang Jin-Ping, Sun Jin-Feng, Liu Yu-Fang, Zhu Zun-Lüe. Analytic potential energy function of the SiH2(C2v, X1A1) radical using CCSD(T) theory in combination with quintuple correlation-consistent basis set. Acta Physica Sinica, 2009, 58(8): 5329-5334. doi: 10.7498/aps.58.5329
    [10] Ye Xiang-Xi, Ming Chen, Hu Yun-Cheng, Ning Xi-Jing. Theoretical prediction of the ability for bulk materials to form single crystals. Acta Physica Sinica, 2009, 58(5): 3293-3301. doi: 10.7498/aps.58.3293
    [11] Wang Zhen-Yu, Tang Chang-Jian. The self-consistent theory of the electron distribution and electro-magnetic field of a relativistic hollow electron beam in ion-channel. Acta Physica Sinica, 2007, 56(6): 3313-3317. doi: 10.7498/aps.56.3313
    [12] Wu Yue-Hua, Xia Zhong-Fu, Wang Fei-Peng, Qiu Xun-Lin. Influence of grid voltage on charge storage ability of porous PTFE film electret s. Acta Physica Sinica, 2003, 52(12): 3186-3190. doi: 10.7498/aps.52.3186
    [13] Guo Hong, Li Gao-Xiang, Peng Ji-Sheng. . Acta Physica Sinica, 2002, 51(11): 2517-2523. doi: 10.7498/aps.51.2517
    [14] Chen Guang. . Acta Physica Sinica, 2002, 51(1): 197-200. doi: 10.7498/aps.51.197
    [15] HE YI-PING, CHEN DE-MING, LIU YONG-GUI, LI CHUAN-LU. KINETIC COUPLING MODE THEORY OF THE FLAT TYPE OF CFEL LOADING DIELECTRIC WITH WIGGLER. Acta Physica Sinica, 1993, 42(6): 935-939. doi: 10.7498/aps.42.935
    [16] WANG GEN-MIAO, CHEN HUI-YU, WANG WEI-HUA, DONG YUAN-DA. MECHANICAL ALLOY METHOD AND FORMATION ABILITY OF FexAl100-x AMORPHOUS POWDER. Acta Physica Sinica, 1990, 39(9): 1413-1417. doi: 10.7498/aps.39.1413
    [17] XIONG SHI-JIE, CAI JIAN-HUA. SCALING THEORY OF ANDERSON LOCALIZATION IN DISORDERED SYSTEMS WITH SPACE MODULATIONS A REAL SPACE RENORMALIZATION GROUP APPROACH. Acta Physica Sinica, 1985, 34(12): 1530-1538. doi: 10.7498/aps.34.1530
    [18] QIN YUN-WEN. RENORMALIZED QUASI-LINEAR THEORY OF TURBULENCE IN NON-UNIFORM PLASMA——GENERALIZATION OF MISGUICH-BALESCU THEORY. Acta Physica Sinica, 1984, 33(1): 25-36. doi: 10.7498/aps.33.25
    [19] QIU XIAO-MING. RENORMALIZED QUASI LINEAR THEORY OF TURBULENCE IN NON UNIFORM PLASMA (Ⅱ)——RESONANT DIFFUSION IN A TURBULENT PLASMA. Acta Physica Sinica, 1980, 29(9): 1104-1109. doi: 10.7498/aps.29.1104
    [20] QIU XIAO-MING. RENORMALIZED QUASI-LINEAR THEORY OF TURBULENCE IN NON-UNIFORM PLASMA (Ⅰ)——GENERALIZATION OF MISQUICH-BALESCU THEORY. Acta Physica Sinica, 1980, 29(9): 1093-1103. doi: 10.7498/aps.29.1093
Metrics
  • Abstract views:  6219
  • PDF Downloads:  7313
  • Cited By: 0
Publishing process
  • Received Date:  10 November 2014
  • Accepted Date:  05 January 2015
  • Published Online:  05 July 2015

/

返回文章
返回
Baidu
map