Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new data assimilation method based on dual-number theory

Cao Xiao-Qun Huang Qun-Bo Liu Bai-Nian Zhu Meng-Bin Yu Yi

Citation:

A new data assimilation method based on dual-number theory

Cao Xiao-Qun, Huang Qun-Bo, Liu Bai-Nian, Zhu Meng-Bin, Yu Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In gradient computations of the variational data assimilation (VDA) by the adjoint method, in order to overcome a lot of shortcomings such as low accuracy, difficult implementation, and great complexity, etc., a novel data assimilation method is proposed based on the dual-number theory. The important advantages are that the coding of adjoint models and reverse integrations are not necessary any more, and the values of cost functional and its corresponding gradient vectors can be attained simultaneously only by one forward computation in dual-number space. Furthermore, the accuracy of gradient can be close to the computer machine precision without other error sources. The paper is organised as follows. Firstly, the dual-number theory and algorithm rules are introduced. Then, the issues of gradient analysis and computation in VDA are transformed into the processes of calculating the cost functional numerically in dual-number space, and the gradient vectors can be obtained at the same time in an easy, efficient and accurate way. Secondly, the new algorithm for data assimilation in nonlinear physical systems is developed by combining accurate gradient information from the dual-number method with classical optimization algorithm. Thirdly, numerical experiments on sensitivity analysis for an ENSO nonlinear air-sea coupled oscillator are implemented, and the results are presented to demonstrate the important advantages of the dual-number method in the calculation of derivative information. Finally, numerical simulations for data assimilation are carried out respectively for the typical Lorenz 63 chaotic systems, the specific humidity evolving equation with physical “on-off” process at a single grid point, and a parabolic partial differential equation. Some conclusions can be drawn from the numerical experiments. The newly proposed method may be suited to many kinds of optimization problems with ordinary or partial differential equations as constraints, such as data assimilation, parameter estimation, inverse problems, sensitivity analysis etc. Results show that the new method can reconstruct the initial conditions or parameters of a nonlinear dynamical system very conveniently and accurately. Its another advantage is being very easy to implement with a high accuracy in gradient computation, so it is robust in the process of numerical optimization. The estimated initial states or parameters are convergent to real value in the cost of no more computations, when there are noises in the observations. But many tests are still needed to demonstrate the validity and advantages of the new data assimilation method, especially in more complex and realistic numerical prediction models of atmosphere and ocean.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41475094, 41105063, 41375105), and the Young Innovation Science Foundation of CHREO (Grant Nos. GFZX04060103-5-19).
    [1]

    Huang S X, Wu R S 2001 Mathematical Physics Problems in Atmosphere Science (Beijing: Meteorology Press) (in Chinese) p460 [黄思训、伍荣生 2001 大气科学中的数学物理问题(北京: 气象出版社) 第 460 页]

    [2]

    Zou X L 2009 Data Assimilation-Theory and Application (Vol. 1) (Beijing: Meteorology Press) p43 (in Chinese) [邹晓蕾 2009 资料同化-理论与应用(上册) (北京: 气象出版社) 第 43 页]

    [3]

    Evensen G 1994 J. Geophys. Res. 99 10143

    [4]

    Talagrand O, Courtier P 1987 Q. J. R. Meteorol. Soc 113 1311

    [5]

    Rabier, F., Jarvinen, H., Klinker, E. and Mahfouf, J. F 2000 Q. J. R. Meteorol. Soc. 126 1148

    [6]

    Cao X Q, Huang S X, Du H D 2008 Acta Phys. Sin. 57 1984 (in Chinese) [曹小群, 黄思训, 杜华栋 2008 57 1984]

    [7]

    Cao X Q, Song J Q, Zhang W M 2013 Acta Phys. Sin. 62 170504 (in Chinese) [曹小群, 宋君强, 张卫民 2013 62 170504]

    [8]

    Zhang W M, Cao X Q, Song J Q 2012 Acta Phys. Sin. 61 249202 (in Chinese) [张卫民, 曹小群, 宋君强 2012 61 249202]

    [9]

    Giering R 1998 ACM Trans. On Math. Software 24 437

    [10]

    Cheng Q, Zhang H B, Wang B 2009 Mathematica Numerica Sinica 31 15 (in Chinese) [程强、张海斌、王斌 2009 计算数学 31 15]

    [11]

    Lyness J N, Moler C B 1967 SIAM Journal of Numerical Analysis 4 202

    [12]

    Martins J R R A 2002 A Coupled-adjoint method for highfidelity aero-structural optimization Ph. D. Dissertation. (Stanford: Stanford University)

    [13]

    Martins J R R A, Kroo I M, Alonso J J 2000 Proceedings of the 38th Aerospace Sciences Meeting, Reno, NV, January 2-5, AIAA Paper 2000-0689

    [14]

    Gao X W, Liu D D, Chen P C 2002 Computational Mechanics 28 40

    [15]

    Guo L, Gao X W 2008 journal of southeast university (Natural Science Edition) 38 141 (in Chinese) [郭力、高效伟 2008 东南大学学报: 自然科学版 38 141]

    [16]

    Clifford W K 1871 Proceedings of the London M athematical Society London, U. K., April 13-15, 1871 p381

    [17]

    Brodsky V, Shoham M 1999 Mechanism and Machine Theory 34 693

    [18]

    WANG J Y, LIANG H Z, SUN Z W 2010 Journal of Astronautics 31 1711 (in Chinese) [王剑颖、梁海朝、孙兆伟 2010 宇航学报 31 1711]

    [19]

    Spall R, Yu W 2013 Journal of Fluids Engineering 135 014501

    [20]

    Wenbin Yu, Maxwell Blair 2013 Computer Physics Communications 184 1446

    [21]

    Mo J Q, Lin W T, Zhu J 2006 Adv. Math. 35 232

    [22]

    He J H 2008 Int. J. Modern. Phys. B 22 3487

    [23]

    He J H, Lee E. W. M 2009 Phys. Lett. A 373 1644

    [24]

    Wu G C 2012 Chin. Phys. B 21 120504

    [25]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [26]

    Mu M, Zheng Q 2005 Mon Wea. Rev. 133 2711

    [27]

    Wang J F, Mu M, Zheng Q 2005 Tellus 57A 736

    [28]

    Zheng Q, Sha J X, Fang C L 2012 Sci. China Earth Sci. 42 458

    [29]

    Isakov V, Kindermann S 2000 Inverse Problems 16 665

  • [1]

    Huang S X, Wu R S 2001 Mathematical Physics Problems in Atmosphere Science (Beijing: Meteorology Press) (in Chinese) p460 [黄思训、伍荣生 2001 大气科学中的数学物理问题(北京: 气象出版社) 第 460 页]

    [2]

    Zou X L 2009 Data Assimilation-Theory and Application (Vol. 1) (Beijing: Meteorology Press) p43 (in Chinese) [邹晓蕾 2009 资料同化-理论与应用(上册) (北京: 气象出版社) 第 43 页]

    [3]

    Evensen G 1994 J. Geophys. Res. 99 10143

    [4]

    Talagrand O, Courtier P 1987 Q. J. R. Meteorol. Soc 113 1311

    [5]

    Rabier, F., Jarvinen, H., Klinker, E. and Mahfouf, J. F 2000 Q. J. R. Meteorol. Soc. 126 1148

    [6]

    Cao X Q, Huang S X, Du H D 2008 Acta Phys. Sin. 57 1984 (in Chinese) [曹小群, 黄思训, 杜华栋 2008 57 1984]

    [7]

    Cao X Q, Song J Q, Zhang W M 2013 Acta Phys. Sin. 62 170504 (in Chinese) [曹小群, 宋君强, 张卫民 2013 62 170504]

    [8]

    Zhang W M, Cao X Q, Song J Q 2012 Acta Phys. Sin. 61 249202 (in Chinese) [张卫民, 曹小群, 宋君强 2012 61 249202]

    [9]

    Giering R 1998 ACM Trans. On Math. Software 24 437

    [10]

    Cheng Q, Zhang H B, Wang B 2009 Mathematica Numerica Sinica 31 15 (in Chinese) [程强、张海斌、王斌 2009 计算数学 31 15]

    [11]

    Lyness J N, Moler C B 1967 SIAM Journal of Numerical Analysis 4 202

    [12]

    Martins J R R A 2002 A Coupled-adjoint method for highfidelity aero-structural optimization Ph. D. Dissertation. (Stanford: Stanford University)

    [13]

    Martins J R R A, Kroo I M, Alonso J J 2000 Proceedings of the 38th Aerospace Sciences Meeting, Reno, NV, January 2-5, AIAA Paper 2000-0689

    [14]

    Gao X W, Liu D D, Chen P C 2002 Computational Mechanics 28 40

    [15]

    Guo L, Gao X W 2008 journal of southeast university (Natural Science Edition) 38 141 (in Chinese) [郭力、高效伟 2008 东南大学学报: 自然科学版 38 141]

    [16]

    Clifford W K 1871 Proceedings of the London M athematical Society London, U. K., April 13-15, 1871 p381

    [17]

    Brodsky V, Shoham M 1999 Mechanism and Machine Theory 34 693

    [18]

    WANG J Y, LIANG H Z, SUN Z W 2010 Journal of Astronautics 31 1711 (in Chinese) [王剑颖、梁海朝、孙兆伟 2010 宇航学报 31 1711]

    [19]

    Spall R, Yu W 2013 Journal of Fluids Engineering 135 014501

    [20]

    Wenbin Yu, Maxwell Blair 2013 Computer Physics Communications 184 1446

    [21]

    Mo J Q, Lin W T, Zhu J 2006 Adv. Math. 35 232

    [22]

    He J H 2008 Int. J. Modern. Phys. B 22 3487

    [23]

    He J H, Lee E. W. M 2009 Phys. Lett. A 373 1644

    [24]

    Wu G C 2012 Chin. Phys. B 21 120504

    [25]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [26]

    Mu M, Zheng Q 2005 Mon Wea. Rev. 133 2711

    [27]

    Wang J F, Mu M, Zheng Q 2005 Tellus 57A 736

    [28]

    Zheng Q, Sha J X, Fang C L 2012 Sci. China Earth Sci. 42 458

    [29]

    Isakov V, Kindermann S 2000 Inverse Problems 16 665

  • [1] Liu Wu, Zhu Cheng-Wan, Li Hao-Tian, Zhao Su-Ling, Qiao Bo, Xu Zheng, Song Dan-Dan. Optimization of Ga content gradient in Cu(In,Ga)Se2 solar cells through machine learning and device simulation. Acta Physica Sinica, 2021, 70(23): 238802. doi: 10.7498/aps.70.20211234
    [2] Zheng Feng-Xun, Hou Wei-Zhen, Li Zheng-Qiang. Optimal estimation retrieval for directional polarimetric camera onboard Chinese Gaofen-5 satellite: an analysis on multi-angle dependence and a posteriori error. Acta Physica Sinica, 2019, 68(4): 040701. doi: 10.7498/aps.68.20181682
    [3] Qiao Zhi-Wei. The total variation constrained data divergence minimization model for image reconstruction and its Chambolle-Pock solving algorithm. Acta Physica Sinica, 2018, 67(19): 198701. doi: 10.7498/aps.67.20180839
    [4] Pan Hui, Wang Liang, Wang Qiang-Long, Chen Li-Min, Jia Feng, Liu Zhen-Yu. Design of super-elliptical gradient coils based on multiple objective Pareto optimization method. Acta Physica Sinica, 2017, 66(9): 098301. doi: 10.7498/aps.66.098301
    [5] Wang Yun-Feng, Gu Cheng-Ming, Zhang Xiao-Hui, Wang Yu-Shun, Han Yue-Qi. Expanded four-dimensional variatiaonal data assimilation method to optimize model physical parameters. Acta Physica Sinica, 2014, 63(24): 240202. doi: 10.7498/aps.63.240202
    [6] Ding Liang, Liu Pei-Guo, He Jian-Guo, Joe LoVetri. An optimal layered inhomogeneous background used in microwave tomography system in metallic chamber. Acta Physica Sinica, 2014, 63(18): 184102. doi: 10.7498/aps.63.184102
    [7] Wu Zhu-Hui, Han Yue-Qi, Zhong Zhong, Du Hua-Dong, Wang Yun-Feng. Ensemble variational data assimilation method based on regional successive analysis scheme. Acta Physica Sinica, 2014, 63(7): 079201. doi: 10.7498/aps.63.079201
    [8] Luo Jia-Qi, Liu Feng. Gradient-based response surface approximations for design optimization. Acta Physica Sinica, 2013, 62(19): 190201. doi: 10.7498/aps.62.190201
    [9] Han Ding, Yan Wei, Cai Dan, Yang Han-Le. Retrieval of liquid cloud microphysical properties from spaceborne active and passive sensor data based on optimal estimation theory. Acta Physica Sinica, 2013, 62(14): 149201. doi: 10.7498/aps.62.149201
    [10] Zhang Yu, Zhang Xiao-Juan, Fang Guang-You. A data inversion method for electromagnetic scattering from large-scale layered medium. Acta Physica Sinica, 2013, 62(4): 044204. doi: 10.7498/aps.62.044204
    [11] Cao Xiao-Qun, Song Jun-Qiang, Zhang Wei-Min, Zhao Yan-Lai, Liu Bai-Nian. A new data assimilation method using complex-variable differentiation. Acta Physica Sinica, 2013, 62(17): 170504. doi: 10.7498/aps.62.170504
    [12] Cai Zhi-Peng, Yang Wen-Zheng, Tang Wei-Dong, Hou Xun. Theoretical analysis of response characteristics for the large exponential-doping transmission-mode GaAs photocathodes. Acta Physica Sinica, 2012, 61(18): 187901. doi: 10.7498/aps.61.187901
    [13] Li Yong, Dou Fei-Ling, Fan Ying, Di Zeng-Ru. Theoretical analysis on optimal navigation with total energy restriction in a two-dimensional lattice. Acta Physica Sinica, 2012, 61(22): 228902. doi: 10.7498/aps.61.228902
    [14] Leng Hong-Ze, Song Jun-Qiang, Cao Xiao-Qun, Yang Jin-Hui. Improved particle filter in data assimilation. Acta Physica Sinica, 2012, 61(7): 070501. doi: 10.7498/aps.61.070501
    [15] Huang Si-Xun, Du Hua-Dong, Zhong Ji-Qin, Zhao Yan-Lai. Regularization method of assimilating Doppler radar data and its influence on precipitation forecast. Acta Physica Sinica, 2011, 60(7): 079202. doi: 10.7498/aps.60.079202
    [16] Li Yi, Cao Xiao-Qun, Wang Shu-Chang, Zhang Wei-Min, Zhao Jun. Tests and analysis of digital filter weak constrain in data assimilation. Acta Physica Sinica, 2011, 60(9): 099203. doi: 10.7498/aps.60.099203
    [17] Li Rong, Wu Xin. A symmetric product of two optimal third-order force gradient symplectic algorithms. Acta Physica Sinica, 2010, 59(10): 7135-7143. doi: 10.7498/aps.59.7135
    [18] Zhang Liang, Huang Si-Xun, Liu Yu-Di, Zhong Jian. Variational assimilation combined with generalized variational optimization analysis for sea surface wind retrieval from microwave scatterometer data. Acta Physica Sinica, 2010, 59(4): 2889-2897. doi: 10.7498/aps.59.2889
    [19] Du Hua-Dong, Huang Si-Xun, Shi Han-Qing. Method and experiment of channel selection for high spectral resolution data. Acta Physica Sinica, 2008, 57(12): 7685-7692. doi: 10.7498/aps.57.7685
    [20] LI SHU-YOU, DU ZHI-HUI, WU MENG-YUE, ZHU JING, LI SAN-LI. PARALLEL REALIZATION OF SIMULATED ANNEALING ALGORITHM: MODIFICATIONS AND APPLICATIONS. Acta Physica Sinica, 2001, 50(7): 1260-1263. doi: 10.7498/aps.50.1260
Metrics
  • Abstract views:  5843
  • PDF Downloads:  326
  • Cited By: 0
Publishing process
  • Received Date:  26 October 2014
  • Accepted Date:  30 January 2015
  • Published Online:  05 July 2015

/

返回文章
返回
Baidu
map