搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Pareto优化理论的多目标超椭梯度线圈设计

潘辉 王亮 王强龙 陈利民 贾峰 刘震宇

引用本文:
Citation:

基于Pareto优化理论的多目标超椭梯度线圈设计

潘辉, 王亮, 王强龙, 陈利民, 贾峰, 刘震宇

Design of super-elliptical gradient coils based on multiple objective Pareto optimization method

Pan Hui, Wang Liang, Wang Qiang-Long, Chen Li-Min, Jia Feng, Liu Zhen-Yu
PDF
导出引用
  • 磁共振系统梯度线圈设计是一个多目标优化问题,在设计时需要综合考虑能耗、磁场能、线性度等设计要求.这些设计要求通常难以同时获得极小解,因此在设计梯度线圈时需要权衡线圈的各方面的设计需求.本文基于柱面可展性和流函数设计方法,结合Pareto优化方法实现了在超椭圆柱设计表面上梯度线圈的多目标设计.分别分析了磁场能、能耗目标对梯度线圈线性度、线圈构型的影响;并在Pareto解空间中分析各目标的相互变化关系,通过数值算例验证了该方法在超椭梯度线圈设计时的有效性与灵活性.优化结果显示,在满足线性度误差小于5%,能耗与磁场能分别小于用户设定值的设计约束下,梯度线圈的多目标设计存在多个局部优化解.该方法可以直观地比较相同目标函数值的情况下各单目标的具体表现,有利于实现不同的设计要求下梯度线圈的最终定型设计.
    The design of gradient coils for a magnetic resonance imaging (MRI) system is a multiple objective optimization problem, which usually needs to deal with a couple of conflicting design objectives, such as the stored magnetic energy, power consumption, and target linear gradient distribution. These design requirements usually conflict with each other, and there is no unique optimal solution which is capable of minimizing all objectives simultaneously. Therefore, the design of gradient coils needs to be optimized reasonably with the tradeoff among different design objectives. Based on the developable property of the super-elliptical cylindrical surface and the stream function design method, the multiple objective optimization problem is analyzed by using the Pareto optimization method in this paper. The effect of proposed approach is illustrated by using the stream function method and three aforementioned coil design objectives are analyzed. The influences of the stored magnetic energy and power consumption target on linearity of gradient coil and the configuration of coils are analyzed respectively. The suitable sizes of gradient coils are discussed by analyzing the change of the stored magnetic energy. A weighted sum method is employed to produce the optimal Pareto solutions, in which the multiple objective problem reduces into a single objective function through a weighted sum of all objectives. The quantitative relationship of each design requirement is analyzed in the Pareto solution space, where Pareto optimal solutions can be intuitively found by dealing efficiently with the tradeoff among different coil properties. Numerical examples of super-elliptical gradient coil solutions are provided to demonstrate the effectiveness and versatility of the proposed method to design super-elliptical gradient coils with different coil requirements. The optimization results show that there are multiple available solutions in the convex Pareto solution space under the constraints that the linear gradient deviation is less than 5% and the magnetic stored energy and power dissipated are both no more than user-preset values. In the case that the values of summed objective functions are the same, the proposed method can intuitively see the performance of each individual target, thereby conducting to realizing the final design of gradient coils under the different design requirements. With the proposed approach, coil designers can have a reasonable overview of gradient coil design about the achievable performances of some specific properties and the competing or compatible relationships among coils properties. Therefore, a suitable design of the gradient coils for a given requirement of MRI application can be chosen reasonably.
      通信作者: 刘震宇, liuzy@ciomp.ac.cn
    • 基金项目: 国家自然科学基金(批准号:51675506,51275504)、吉林省科技发展计划(批准号:20140519007JH)和欧洲研究理事会ERC启动基金RANGEmri282345项目资助的课题.
      Corresponding author: Liu Zhen-Yu, liuzy@ciomp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51675506, 51275504), the Science and Technology Development Plan of Jilin Province, China (Grant No. 20140519007JH), and an European Research Council Starting Grant RANGEmri(Grant Agreement 282345).
    [1]

    Zu D L 2004 Magnetic Resonance Imaging (Beijing: Higher Education Press) pp53-82 (in Chinese) [俎栋林 2004 核磁共振成像学(北京: 高等教育出版社)第5382页]

    [2]

    Wang L, Cao Y H, Jia F, Liu Z Y 2014 Acta Phys. Sin. 63 238301 (in Chinese) [王亮, 曹英晖, 贾峰, 刘震宇 2014 63 238301]

    [3]

    Turner R 1986 J. Phys. D: Appl. Phys. 19 147

    [4]

    Turner R 1988 J. Phys. E: Sci. Instrum. 21 948

    [5]

    Forbes L K, Crozier S 2002 J. Phys. D: Appl. Phys. 35 839

    [6]

    Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701

    [7]

    Forbes L K, Brideson M A, Crozier S 2005 IEEE Trans. Magn. 41 2134

    [8]

    Liu W T, Zu D L, Tang X, Guo H 2007 J. Phys. D: Appl. Phys. 40 4418

    [9]

    Li X, Xie D X, Wang J M 2009 IEEE Trans. Magn. 45 1804

    [10]

    Tomasi D 2001 Magn. Reson. Med. 45 505

    [11]

    Peeren G N 2003 J. Comput. Phys. 191 305

    [12]

    Lemdiasov R A, Ludwig R 2005 Concepts Magn. Reson. B: Magn. Reson. Eng. 26B 67

    [13]

    Liu Z Y, Jia F, Hennig J, Korvink J G 2012 IEEE Trans. Magn. 48 1179

    [14]

    Wang Q L 2013 Practical Design of Magnetostatic Structure Using Numerical Simulation (Singapore: John Wiley Sons) pp39-142

    [15]

    Hu G L, Ni Z P, Wang Q L 2012 IEEE Trans. Appl. Supercond. 22 4900604

    [16]

    Zhu X C, Wang Q L, Wang H S 2016 Adv. Technol. Electral. Eng. Energ. 35 43 (in Chinese) [朱旭晨, 王秋良, 王厚生 2016 电工电能技术 35 43]

    [17]

    Li X, Xia L, Chen W F, Liu F, Crozier S, Xie D X 2011 J. Magn. Reson. 208 148

    [18]

    Hu Y, Wang Q L, Li Y, Zhu X C, Niu C Q 2016 Acta Phys. Sin. 65 218301 (in Chinese) [胡洋, 王秋良, 李毅, 朱旭晨, 牛超群 2016 65 218301]

    [19]

    Turner R 1993 Magn. Reson. Imag. 11 903

    [20]

    Abduljalil A M, Aletras A H, Robilaille P M L 1994 Magn. Reson. Med. 31 450

    [21]

    Alsop D C, Connick T J 1996 Magn. Reson. Med. 35 875

    [22]

    Pissanetzky S 1992 Meas. Sci. Technol. 3 667

    [23]

    Bowtell R, Robyr P 1998 J. Magn. Reson. 131 286

    [24]

    Wang L Q, Wang W M 2014 Chin. Phys. B 23 028703

    [25]

    Sanchez C C, Pantoja M F, Poole M, Bretones A R 2012 IEEE Trans. Magn. 48 1967

    [26]

    Marler R T, Arora J S 2004 Struct. Multid. Optim. 26 369

    [27]

    Marler R T, Arora J S 2005 Eng. Optim. 37 551

    [28]

    Xie D X, Sun X W, Bai B D, Yang S Y 2008 IEEE Trans. Magn. 44 1006

  • [1]

    Zu D L 2004 Magnetic Resonance Imaging (Beijing: Higher Education Press) pp53-82 (in Chinese) [俎栋林 2004 核磁共振成像学(北京: 高等教育出版社)第5382页]

    [2]

    Wang L, Cao Y H, Jia F, Liu Z Y 2014 Acta Phys. Sin. 63 238301 (in Chinese) [王亮, 曹英晖, 贾峰, 刘震宇 2014 63 238301]

    [3]

    Turner R 1986 J. Phys. D: Appl. Phys. 19 147

    [4]

    Turner R 1988 J. Phys. E: Sci. Instrum. 21 948

    [5]

    Forbes L K, Crozier S 2002 J. Phys. D: Appl. Phys. 35 839

    [6]

    Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701

    [7]

    Forbes L K, Brideson M A, Crozier S 2005 IEEE Trans. Magn. 41 2134

    [8]

    Liu W T, Zu D L, Tang X, Guo H 2007 J. Phys. D: Appl. Phys. 40 4418

    [9]

    Li X, Xie D X, Wang J M 2009 IEEE Trans. Magn. 45 1804

    [10]

    Tomasi D 2001 Magn. Reson. Med. 45 505

    [11]

    Peeren G N 2003 J. Comput. Phys. 191 305

    [12]

    Lemdiasov R A, Ludwig R 2005 Concepts Magn. Reson. B: Magn. Reson. Eng. 26B 67

    [13]

    Liu Z Y, Jia F, Hennig J, Korvink J G 2012 IEEE Trans. Magn. 48 1179

    [14]

    Wang Q L 2013 Practical Design of Magnetostatic Structure Using Numerical Simulation (Singapore: John Wiley Sons) pp39-142

    [15]

    Hu G L, Ni Z P, Wang Q L 2012 IEEE Trans. Appl. Supercond. 22 4900604

    [16]

    Zhu X C, Wang Q L, Wang H S 2016 Adv. Technol. Electral. Eng. Energ. 35 43 (in Chinese) [朱旭晨, 王秋良, 王厚生 2016 电工电能技术 35 43]

    [17]

    Li X, Xia L, Chen W F, Liu F, Crozier S, Xie D X 2011 J. Magn. Reson. 208 148

    [18]

    Hu Y, Wang Q L, Li Y, Zhu X C, Niu C Q 2016 Acta Phys. Sin. 65 218301 (in Chinese) [胡洋, 王秋良, 李毅, 朱旭晨, 牛超群 2016 65 218301]

    [19]

    Turner R 1993 Magn. Reson. Imag. 11 903

    [20]

    Abduljalil A M, Aletras A H, Robilaille P M L 1994 Magn. Reson. Med. 31 450

    [21]

    Alsop D C, Connick T J 1996 Magn. Reson. Med. 35 875

    [22]

    Pissanetzky S 1992 Meas. Sci. Technol. 3 667

    [23]

    Bowtell R, Robyr P 1998 J. Magn. Reson. 131 286

    [24]

    Wang L Q, Wang W M 2014 Chin. Phys. B 23 028703

    [25]

    Sanchez C C, Pantoja M F, Poole M, Bretones A R 2012 IEEE Trans. Magn. 48 1967

    [26]

    Marler R T, Arora J S 2004 Struct. Multid. Optim. 26 369

    [27]

    Marler R T, Arora J S 2005 Eng. Optim. 37 551

    [28]

    Xie D X, Sun X W, Bai B D, Yang S Y 2008 IEEE Trans. Magn. 44 1006

  • [1] 臧雨宸, 林伟军, 苏畅, 吴鹏飞. Gauss声束对离轴椭圆柱的声辐射力矩.  , 2021, 70(8): 084301. doi: 10.7498/aps.70.20201635
    [2] 赵超樱, 范钰婷, 孟义朝, 郭奇志, 谭维翰. 圆柱型光纤螺线圈轨道角动量模式.  , 2020, 69(5): 054207. doi: 10.7498/aps.69.20190997
    [3] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究.  , 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [4] 黄清明, 陈珊珊, 张建青, 杨洋, 郑刚. 基于目标场点法和流函数的磁共振有源匀场线圈设计方法.  , 2019, 68(19): 198301. doi: 10.7498/aps.68.20190612
    [5] 谭志中, 张庆华. 基于递推-变换方法计算圆柱面网络的等效电阻及复阻抗.  , 2017, 66(7): 070501. doi: 10.7498/aps.66.070501
    [6] 胡洋, 王秋良, 李毅, 朱旭晨, 牛超群. 基于边界元方法的超导核磁共振成像设备高阶轴向匀场线圈优化算法.  , 2016, 65(21): 218301. doi: 10.7498/aps.65.218301
    [7] 朱光, 刘建华, 程军胜, 冯忠奎, 戴银明, 王秋良. 25T超导磁体优化中线圈数量影响分析.  , 2016, 65(5): 058401. doi: 10.7498/aps.65.058401
    [8] 胡格丽, 倪志鹏, 王秋良. 结合振动控制的柱面纵向梯度线圈目标场设计方法.  , 2014, 63(1): 018301. doi: 10.7498/aps.63.018301
    [9] 王亮, 曹英晖, 贾峰, 刘震宇. 超椭圆柱面梯度线圈设计.  , 2014, 63(23): 238301. doi: 10.7498/aps.63.238301
    [10] 罗佳奇, 刘锋. 基于梯度响应面模型的优化设计.  , 2013, 62(19): 190201. doi: 10.7498/aps.62.190201
    [11] 范孟豹, 尹亚丹, 曹丙花. 基于截断区域特征函数展开法的金属管材电涡流检测线圈阻抗解析模型.  , 2012, 61(8): 088105. doi: 10.7498/aps.61.088105
    [12] 高东宝, 曾新吾. 基于各向同性材料的层状椭圆柱形声隐身衣设计.  , 2012, 61(18): 184301. doi: 10.7498/aps.61.184301
    [13] 王战, 董建峰, 刘锦景, 罗孝阳. 基于线变换的椭圆柱外隐身斗篷的设计研究.  , 2012, 61(20): 204101. doi: 10.7498/aps.61.204101
    [14] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型.  , 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [15] 钱江海, 韩定定. 基于预期流优化的空间网络引力模型.  , 2009, 58(5): 3028-3033. doi: 10.7498/aps.58.3028
    [16] 沈 杰, 宁瑞鹏, 刘 颖, 李鲠颖. 一种减小梯度线圈产生的涡流的方法.  , 2006, 55(6): 3060-3066. doi: 10.7498/aps.55.3060
    [17] 张超英, 李华兵, 谭惠丽, 刘慕仁, 孔令江. 椭圆柱体在牛顿流体中运动的格子Boltzmann方法模拟.  , 2005, 54(5): 1982-1987. doi: 10.7498/aps.54.1982
    [18] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构.  , 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [19] 查学军, 朱思铮, 虞清泉. 托卡马克极向场线圈的优化方法.  , 2003, 52(2): 428-433. doi: 10.7498/aps.52.428
    [20] 林为干, 林炎武. 载直流椭圆柱内场的直接积分求解法.  , 1964, 20(6): 571-575. doi: 10.7498/aps.20.571
计量
  • 文章访问数:  6162
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-21
  • 修回日期:  2017-02-06
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map