Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Plasmonic propagation and spectral splitting in nanostructured metal wires

Xu Di-Hu Hu Qing Peng Ru-Wen Zhou Yu Wang Mu

Citation:

Plasmonic propagation and spectral splitting in nanostructured metal wires

Xu Di-Hu, Hu Qing, Peng Ru-Wen, Zhou Yu, Wang Mu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to the coupling of photons with the electrons at a metal-dielectric interface, surface plasmons (SPs) can achieve extreflely small wavelengths and highly localized electromagnetic fields. Hence, plasmonics with subwavelength characteristics can break the diffraction limit of light, and thus has aroused great interest for decades. The SP-inspired reflearch, in the application respect, includes extraordinary optical transmission, surface enhanced Raman spectroscopy, sub-wavelength imaging, electromagnetic induced transparency, perfect absorbers, polarization switches, etc.; and in the fundamental respect, includes plasmon-mediated light-matter interaction, such as plasmonic lasing, plasmon-exciton strong coupling, etc.#br#Recently a series of studies has been performed to push the dimensions of plasmonic devices into deep subwavelength by using nanowires. The chemically synthesized metallic nanowires have good plasmonic properties such as low damping. The reported silver nanowire structures show great potential as plasmonic devices for communication and computation. Now we develop the nanostructured metal wires for plasmonic splitters based on the following considerations. One is that we introduce cascade nano-gratings on a metallic nanowire, enabling a single nanowire to act as a spectral splitting device at subwavelength; and the other is that we use silicon as a substrate for the metallic nanowire, making the plasmonic nanowire device compatible with silicon based technologies.#br#In this paper, we continue and develop our previous work on position-sensitive spectral splitting with a plasmonic nanowire on silicon chip (see Scientific Reports (2013) 3 3095). The three parts are organized as follows. In the first part, we derive analytically the dispersion relation of the SPs in a suspended silver nanowire based on Maxwell equations. In the second part, we placed a silver nanowire in the silicon substrate, and use the finite-element method (FEM) to obtain the dispersion relation of the SPs for the practical applications. The calculations show that the SP mode can be confined better in this system, howbeit with larger loss. Starting from the dispersion relation, we then calculate the mode area, the propagation length and the effective index of the SP modes, with respect to the nanowire dimension and the substrate materials. It is shown that a thinner nanowire has smaller mode area and a higher-index substrate induces larger loss. We also perform the finite-difference time-domain (FDTD) simulation to investigate the electromagnetic field distribution in this system. We find that the SP mode is mainly confined around the top surface of the nanowire, and in the crescent gap between the nanowire and the substrate. In the third part, we demonstrate both experimentally and theoretically that the silver nanowire with two cascaded gratings can act as a spectral splitter for sorting/demultiplexing photons at different spacial locations. The geometry of the grating is optimized by rigorous coupled wave analysis (RCWA) calculation. The carefully designed gratings allow the SPs with the frequencies in the plasmonic band and prohibit the SPs with the frequencies in the plasmonics bandgap. Those prohibited SPs areflemitted out through a single groove in front of each grating. Both the detected images and the measured optical spectra demonstrate that the SPs with different colors can be emitted at different grooves along a single nanowire. Thus the structured metal nanowire shows potential applications in position-sensitive spectral splitting and optical signal processing on a nanoscale, and provides a unique approach to integrating nanophotonics with microelectronics.
    • Funds: Project supported by th Natural Natural Science Foundation of China (Grant Nos. 11034005, 61475070, 11474157), and the National Basic Research Program of China (Grant No. 2012CB921502).
    [1]

    Ritchie R H 1957 Phys. Rev. 106 874

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [3]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [4]

    Tang Z H, Peng R W, Wang Z, Wu X, Bao Y J, Wang Q J, Zhang Z J, Sun W H, Wang M 2007 Phys. Rev. B 76 195405

    [5]

    Bao Y J, Peng R W, Shu D J, Wang M, Lu X, Shao J, Lu W, Ming N B 2008 Phys. Rev. Lett. 101 087401

    [6]

    Gao F, Li D, Peng R W, Hu Q, Wei K, Wang Q J, Zhu Y Y, Wang M 2009 Appl. Phys. Lett. 95 011104

    [7]

    Li D, Qin L, Xiong X, Peng R W, Hu Q, Ma G B, Zhou H S, Wang M 2011 Opt. Express 19 22942

    [8]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357

    [9]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318

    [10]

    Garcia-Vidal F J, Pendry J B 1996 Phys. Rev. Lett. 771163

    [11]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [12]

    Kawata S, Inouye Y, Verma P 2009 Nat. Photon. 3 388

    [13]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [14]

    Qin L, Zhang K, Peng R W, Xiong X, Zhang W, Huang X R, Wang M 2013 Phys. Rev. B 87 125136

    [15]

    Zhang K, Wang C, Qin L, Peng R W, Xu D H, Xiong X, Wang M 2014 Opt. Lett. 39 3539

    [16]

    Xiong X, Sun W H, Bao Y J, Peng R W, Wang M, Sun C, Lu X, Shao J, Li Z F, Ming N B 2009 Phys. Rev. B 80 201105

    [17]

    Xiong X, Sun W H, Bao Y J, Wang M, Peng R W, Sun C, Lu X, Shao J, Li Z F, Ming N B 2010 Phys. Rev. B 81 075119

    [18]

    Xiong X, Wang Z W, Fu S J, Wang M, Peng R W, Hao X P, Sun C 2011 Appl. Phys. Lett. 99 181905

    [19]

    Jiang S C, Xiong X, Sarriugarte P, Jiang S W, Yin X B, Wang Y, Peng R W, Wu D, Hillenbrand R, Zhang X, Wang M 2013 Phys. Rev. B 88 161104

    [20]

    Xiong X, Xue Z H, Meng C, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Phys. Rev. B 88 115105

    [21]

    Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994

    [22]

    Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026

    [23]

    Gonzalez M U, Weeber J C, Baudrion A L, Dereux A, Stepanov A L, Krenn J R, Devaux E, Ebbesen T W 2006 Phys. Rev. B 73 155416

    [24]

    Xu D H, Zhang K, Shao M R, Wu H W, Fan R H, Peng R W, Wang M 2014 Opt. Express 22 25700

    [25]

    Zhang Z J, Peng R W, Wang Z, Gao F, Huang X R, Sun W H, Wang Q J, Wang M 2008 Appl. Phys. Lett. 93 171110

    [26]

    Kosako T, kadoya Y, Hofmann H F 2010 Nat. Photon. 4 312

    [27]

    Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, Hulst N F V 2010 Science 329 930

    [28]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629

    [29]

    Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X 2011 Nat. Mater. 10 110

    [30]

    Huang X R, Peng R W, Fan R H 2010 Phys. Rev. Lett. 105 243901

    [31]

    Alu A, D’Aguanno G, Mattiucci N, Bloemer M J 2011 Phys. Rev. Lett. 106 123902

    [32]

    Fan R H, Peng R W, Huang X R, Li J. Liu Y M, Hu Q, Wang M, Zhang X 2012 Adv. Mater. 24 1980

    [33]

    Fan R H, Zhu L H, Peng R W, Huang X R, Qi D X, Ren X P, Hu Q, Wang M 2013 Phys. Rev. B 87 195444

    [34]

    Fan R H, Li J, Peng R W, Huang X R, Qi D X, Xu D H, Ren X P, Wang M 2013 Appl. Phys, Lett. 102 171904

    [35]

    Shen Y C, Ye D X, Celanovic I, Johnson S G, Joannopoulos J D, Soljacic M 2014 Science 343 1499

    [36]

    Ren X P, Fan R H, Peng R W, Huang X R, Xu D H, Zhou Y, Wang M 2015 Phys. Rev. B 91 045111

    [37]

    Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2014 Adv. Mater. 27 1201

    [38]

    Cubukcu E, Zhang S, Park Y S, Bartal G, Zhang X 2009 Appl. Phys. Lett. 95 043113

    [39]

    Chang C C, Sharma Y D, Kim Y S, Bur J A, Shenoi R V, Krishna S, Huang D H, Lin S Y 2010 Nano Lett. 10 1704

    [40]

    Alu A, Engheta N 2006 Phys. Rev. B 74 205436

    [41]

    Compaijen P J, Malyshev V A, Knoester J 2013 Phys. Rev. B 87 205437

    [42]

    Wei H, Wang Z X, Tian X R, Kall M, Xu H X 2011 Nat. Comm. 2 387

    [43]

    Wei H, Li Z P, Tian X R, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J, Xu H X 2011 Nano Lett. 11 471

    [44]

    Fu Y L, Hu X Y, Lu C C, Yue S, Yang H, Gong Q H 2012 Nano Lett. 12 5784

    [45]

    Dreflet A, Koller D, Hohenau A, Leitner A, Aussenegg F R, Krenn J R 2007 Nano Lett. 7 1697

    [46]

    Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J, Xu H X 2010 Nano Lett. 10 1950

    [47]

    Wang G X, Lu H, Liu X M, Mao D, Duan L N 2011 Opt. Express 19 3513

    [48]

    Lerman G M, Yanai A, Levy U 2009 Nano Lett. 9 2139

    [49]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804

    [50]

    Li L, Li T, Wang S M, Zhu S N 2013 Phys. Rev. Lett. 110 046807

    [51]

    Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N D L, Akimov A V, Jo M H, Lukin M D, Park H K 2009 Nat. Phys. 5 475

    [52]

    Hu Q, Xu D H, Zhou Y, Peng R W, Fan R H, Fang N X, Wang Q J. Huang X R, Wang M 2013 Sci. Rep. 3 3095

    [53]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp25-34

    [54]

    Bozhevolnyi S I 2009 Plasmonic Nanoguides and Circuits (Singapore: Pan Stanford Publishing Pte. Ltd.) pp1-30

    [55]

    Holmgaard T, Bozhevolnyi S I 2007 Phys. Rev. B 75 245405

    [56]

    Krasavin A V, Zayats A V 2008 Phys. Rev. B 78 045425

    [57]

    Gramotnev D K, Pile D F P 2004 Appl. Phys. Lett. 85 6323

    [58]

    Jin E X, Xu X F 2005 Appl. Phys. Lett. 86 111106

    [59]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496

    [60]

    Yang X D, Liu Y M, Oulton R F, Yin X B, Zhang X 2011 Nano Lett. 11 321

    [61]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403

    [62]

    Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K, Tong L M 2009 Nano Lett. 9 4515

    [63]

    Zhang S P, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P, Xu H X 2011 Phys. Rev. Lett. 107 096801

    [64]

    Wu X Q, Xiao Y, Meng C, Zhang X N, Yu S L, Wang Y P, Yang C X, Guo X, Ning C Z, Tong L M 2013 Nano Lett. 13 5654

    [65]

    Yu H K, Fang W, Wu X Q, Lin X, Tong L M, Liu W T, Wang A M, Shen Y R 2014 Nano Lett. 14 3487

    [66]

    Wu Z, Li H M, Xiong X, Ma G B, Wang M, Peng R W, Ming N B 2009 Appl. Phys. Lett. 94 041120

    [67]

    Vahala K J 2003 Nature 424 839

    [68]

    Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L, Zhang X, Vahala K 2009 Nature 457 455

    [69]

    Stratton J A 1941 Electromagnetic Theory(New York: McGraw-Hill Book Company Inc) pp349-361

    [70]

    Moharam M G, Grann E B, Pommet D A 1995 J. Opt. Soc. Am. A 12 1068

    [71]

    Rakic A D, Djurisic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

    [72]

    Palik E D 1998 Handbook of Optical Constants of Solids (San Diego: Academic Press)

    [73]

    Li Z P, Bao K, Fang Y R, Guan Z Q, Halas N J, Nordlander P, Xu H X 2010 Phys. Rev. B 82 241402

    [74]

    Zhang S P, Xu H X 2012 ACS Nano 6 8128

    [75]

    Wei H, Zhang S P, Tian X R, Xu H X 2013 PNAS 110 4494

    [76]

    Frankel M Y, Esman R D 1998 J. Lightwave Technol. 16 859

    [77]

    Nguyen H G, Cabon B, Poette J, Yu Z, Fonjallaz P Y 2009 IEEE RWS 590

  • [1]

    Ritchie R H 1957 Phys. Rev. 106 874

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [3]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [4]

    Tang Z H, Peng R W, Wang Z, Wu X, Bao Y J, Wang Q J, Zhang Z J, Sun W H, Wang M 2007 Phys. Rev. B 76 195405

    [5]

    Bao Y J, Peng R W, Shu D J, Wang M, Lu X, Shao J, Lu W, Ming N B 2008 Phys. Rev. Lett. 101 087401

    [6]

    Gao F, Li D, Peng R W, Hu Q, Wei K, Wang Q J, Zhu Y Y, Wang M 2009 Appl. Phys. Lett. 95 011104

    [7]

    Li D, Qin L, Xiong X, Peng R W, Hu Q, Ma G B, Zhou H S, Wang M 2011 Opt. Express 19 22942

    [8]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357

    [9]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318

    [10]

    Garcia-Vidal F J, Pendry J B 1996 Phys. Rev. Lett. 771163

    [11]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [12]

    Kawata S, Inouye Y, Verma P 2009 Nat. Photon. 3 388

    [13]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [14]

    Qin L, Zhang K, Peng R W, Xiong X, Zhang W, Huang X R, Wang M 2013 Phys. Rev. B 87 125136

    [15]

    Zhang K, Wang C, Qin L, Peng R W, Xu D H, Xiong X, Wang M 2014 Opt. Lett. 39 3539

    [16]

    Xiong X, Sun W H, Bao Y J, Peng R W, Wang M, Sun C, Lu X, Shao J, Li Z F, Ming N B 2009 Phys. Rev. B 80 201105

    [17]

    Xiong X, Sun W H, Bao Y J, Wang M, Peng R W, Sun C, Lu X, Shao J, Li Z F, Ming N B 2010 Phys. Rev. B 81 075119

    [18]

    Xiong X, Wang Z W, Fu S J, Wang M, Peng R W, Hao X P, Sun C 2011 Appl. Phys. Lett. 99 181905

    [19]

    Jiang S C, Xiong X, Sarriugarte P, Jiang S W, Yin X B, Wang Y, Peng R W, Wu D, Hillenbrand R, Zhang X, Wang M 2013 Phys. Rev. B 88 161104

    [20]

    Xiong X, Xue Z H, Meng C, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Phys. Rev. B 88 115105

    [21]

    Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994

    [22]

    Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026

    [23]

    Gonzalez M U, Weeber J C, Baudrion A L, Dereux A, Stepanov A L, Krenn J R, Devaux E, Ebbesen T W 2006 Phys. Rev. B 73 155416

    [24]

    Xu D H, Zhang K, Shao M R, Wu H W, Fan R H, Peng R W, Wang M 2014 Opt. Express 22 25700

    [25]

    Zhang Z J, Peng R W, Wang Z, Gao F, Huang X R, Sun W H, Wang Q J, Wang M 2008 Appl. Phys. Lett. 93 171110

    [26]

    Kosako T, kadoya Y, Hofmann H F 2010 Nat. Photon. 4 312

    [27]

    Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, Hulst N F V 2010 Science 329 930

    [28]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629

    [29]

    Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X 2011 Nat. Mater. 10 110

    [30]

    Huang X R, Peng R W, Fan R H 2010 Phys. Rev. Lett. 105 243901

    [31]

    Alu A, D’Aguanno G, Mattiucci N, Bloemer M J 2011 Phys. Rev. Lett. 106 123902

    [32]

    Fan R H, Peng R W, Huang X R, Li J. Liu Y M, Hu Q, Wang M, Zhang X 2012 Adv. Mater. 24 1980

    [33]

    Fan R H, Zhu L H, Peng R W, Huang X R, Qi D X, Ren X P, Hu Q, Wang M 2013 Phys. Rev. B 87 195444

    [34]

    Fan R H, Li J, Peng R W, Huang X R, Qi D X, Xu D H, Ren X P, Wang M 2013 Appl. Phys, Lett. 102 171904

    [35]

    Shen Y C, Ye D X, Celanovic I, Johnson S G, Joannopoulos J D, Soljacic M 2014 Science 343 1499

    [36]

    Ren X P, Fan R H, Peng R W, Huang X R, Xu D H, Zhou Y, Wang M 2015 Phys. Rev. B 91 045111

    [37]

    Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2014 Adv. Mater. 27 1201

    [38]

    Cubukcu E, Zhang S, Park Y S, Bartal G, Zhang X 2009 Appl. Phys. Lett. 95 043113

    [39]

    Chang C C, Sharma Y D, Kim Y S, Bur J A, Shenoi R V, Krishna S, Huang D H, Lin S Y 2010 Nano Lett. 10 1704

    [40]

    Alu A, Engheta N 2006 Phys. Rev. B 74 205436

    [41]

    Compaijen P J, Malyshev V A, Knoester J 2013 Phys. Rev. B 87 205437

    [42]

    Wei H, Wang Z X, Tian X R, Kall M, Xu H X 2011 Nat. Comm. 2 387

    [43]

    Wei H, Li Z P, Tian X R, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J, Xu H X 2011 Nano Lett. 11 471

    [44]

    Fu Y L, Hu X Y, Lu C C, Yue S, Yang H, Gong Q H 2012 Nano Lett. 12 5784

    [45]

    Dreflet A, Koller D, Hohenau A, Leitner A, Aussenegg F R, Krenn J R 2007 Nano Lett. 7 1697

    [46]

    Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J, Xu H X 2010 Nano Lett. 10 1950

    [47]

    Wang G X, Lu H, Liu X M, Mao D, Duan L N 2011 Opt. Express 19 3513

    [48]

    Lerman G M, Yanai A, Levy U 2009 Nano Lett. 9 2139

    [49]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804

    [50]

    Li L, Li T, Wang S M, Zhu S N 2013 Phys. Rev. Lett. 110 046807

    [51]

    Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N D L, Akimov A V, Jo M H, Lukin M D, Park H K 2009 Nat. Phys. 5 475

    [52]

    Hu Q, Xu D H, Zhou Y, Peng R W, Fan R H, Fang N X, Wang Q J. Huang X R, Wang M 2013 Sci. Rep. 3 3095

    [53]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp25-34

    [54]

    Bozhevolnyi S I 2009 Plasmonic Nanoguides and Circuits (Singapore: Pan Stanford Publishing Pte. Ltd.) pp1-30

    [55]

    Holmgaard T, Bozhevolnyi S I 2007 Phys. Rev. B 75 245405

    [56]

    Krasavin A V, Zayats A V 2008 Phys. Rev. B 78 045425

    [57]

    Gramotnev D K, Pile D F P 2004 Appl. Phys. Lett. 85 6323

    [58]

    Jin E X, Xu X F 2005 Appl. Phys. Lett. 86 111106

    [59]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496

    [60]

    Yang X D, Liu Y M, Oulton R F, Yin X B, Zhang X 2011 Nano Lett. 11 321

    [61]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403

    [62]

    Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K, Tong L M 2009 Nano Lett. 9 4515

    [63]

    Zhang S P, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P, Xu H X 2011 Phys. Rev. Lett. 107 096801

    [64]

    Wu X Q, Xiao Y, Meng C, Zhang X N, Yu S L, Wang Y P, Yang C X, Guo X, Ning C Z, Tong L M 2013 Nano Lett. 13 5654

    [65]

    Yu H K, Fang W, Wu X Q, Lin X, Tong L M, Liu W T, Wang A M, Shen Y R 2014 Nano Lett. 14 3487

    [66]

    Wu Z, Li H M, Xiong X, Ma G B, Wang M, Peng R W, Ming N B 2009 Appl. Phys. Lett. 94 041120

    [67]

    Vahala K J 2003 Nature 424 839

    [68]

    Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L, Zhang X, Vahala K 2009 Nature 457 455

    [69]

    Stratton J A 1941 Electromagnetic Theory(New York: McGraw-Hill Book Company Inc) pp349-361

    [70]

    Moharam M G, Grann E B, Pommet D A 1995 J. Opt. Soc. Am. A 12 1068

    [71]

    Rakic A D, Djurisic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

    [72]

    Palik E D 1998 Handbook of Optical Constants of Solids (San Diego: Academic Press)

    [73]

    Li Z P, Bao K, Fang Y R, Guan Z Q, Halas N J, Nordlander P, Xu H X 2010 Phys. Rev. B 82 241402

    [74]

    Zhang S P, Xu H X 2012 ACS Nano 6 8128

    [75]

    Wei H, Zhang S P, Tian X R, Xu H X 2013 PNAS 110 4494

    [76]

    Frankel M Y, Esman R D 1998 J. Lightwave Technol. 16 859

    [77]

    Nguyen H G, Cabon B, Poette J, Yu Z, Fonjallaz P Y 2009 IEEE RWS 590

  • [1] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] Meng Yong-Jun, Li Hong, Tang Jian-Wei, Chen Xue-Wen. Modulation of upconversion luminescence spectrum of single rare-earth-doped upconversion nanocrystal based on plasmonic nanocavity. Acta Physica Sinica, 2022, 71(2): 027801. doi: 10.7498/aps.71.20211438
    [3] Modulation of the upconversion luminescence spectrum of a single rare-earth-doped upconversion nanocrystal based on plasmonic nanocavity. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211438
    [4] Yin Yun-Qiao, Wu Hong-Wei. Magnetic mirror metasurfaces based on spoof surface plasmonic structures. Acta Physica Sinica, 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [5] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [6] Zhu Xu-Peng, Zhang Shi, Shi Hui-Min, Chen Zhi-Quan, Quan Jun, Xue Shu-Wen, Zhang Jun, Duan Hui-Gao. Research progress of coupling theory of metal surface plasmon. Acta Physica Sinica, 2019, 68(24): 247301. doi: 10.7498/aps.68.20191369
    [7] Zhu Xu-Peng, Shi Hui-Min, Zhang Shi, Chen Zhi-Quan, Zheng Meng-Jie, Wang Ya-Si, Xue Shu-Wen, Zhang Jun, Duan Hui-Gao. Review on surface plasmonic coupling systems and their applications in spectra enhancement. Acta Physica Sinica, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [8] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [9] Quan Jia-Qi, Sheng Zong-Qiang, Wu Hong-Wei. Omnidirectional cloaking based on spoof surface plasmonic structure. Acta Physica Sinica, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [10] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [11] Feng Shi-Liang, Wang Jing-Yu, Chen Shu, Meng Ling-Yan, Shen Shao-Xin, Yang Zhi-Lin. Surface plasmon resonance “hot spots” and near-field enhanced spectroscopy at interfaces. Acta Physica Sinica, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [12] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [13] Zhang Yong-Yuan, Luo Li-Na, Zhang Zhong-Yue. Surface plasmon polaritons splitting properties of silver cross nanowires. Acta Physica Sinica, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [14] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [15] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Separating the Z-pinch plasma X-ray radiation and attaining the electron temperature. Acta Physica Sinica, 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [16] Zhang Xing-Fang, Yan Xin. Tunable properties of localized surface plasmon resonance wavelength of gold nanoshell. Acta Physica Sinica, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [17] Zou Wei-Bo, Zhou Jun, Jin Li, Zhang Hao-Peng. Properties of localized surface plasmon resonance of gold nanoshell pairs. Acta Physica Sinica, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [18] Cong Chao, Wu Da-Jian, Liu Xiao-Jun, Li Bo. Study on the localized surface plasmon resonance properties of bimetallic gold and silver three-layered nanotubes. Acta Physica Sinica, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [19] Wang Lei, Cai Wei, Tan Xin-Hui, Xiang Yin-Xiao, Zhang Xin-Zheng, Xu Jing-Jun. Effects of cross-section shape on fast electron beams excited plasmons in the surface of nanowire pairs. Acta Physica Sinica, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [20] Cong Chao, Wu Da-Jian, Liu Xiao-Jun. Localized surface plasmon resonance propertiesof elliptical gold nanotubes. Acta Physica Sinica, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
Metrics
  • Abstract views:  7152
  • PDF Downloads:  882
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2015
  • Accepted Date:  16 April 2015
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map