-
Metal surface plasmon is a collective oscillation effect of free electrons at the micro-nanostructure surface under the stimulation of incident light. Since the corresponding oscillating electric field is strongly bound below the sub-wavelength scale, it can be used as an information carrier for future micro-nano photonic circuit and device, and can also be used to enhance the interaction between light and matter on a micro-nano scale, such as surface enhanced photoluminescence, Raman scattering, nonlinear signal generation, surface enhanced catalysis, photothermal conversion, photovoltaic conversion, etc. How to theoretically understand the unique optical behavior dominated by the plasmon oscillation mode is one of the hot research spots in the field of surface plasmon photonics. In recent years, the theory of surface plasmon has been continuously improved with the support of a large number of experimental researches. In this paper, we first systematically summarize the optical behaviors and properties of metal under the excitation of incident electromagnetic waves, and then briefly describe the plasmonic modes existing in the metal and their corresponding physical natures, the oscillation dynamics process and the currently prevailing surface plasmon coupling theories. We hope that this paper can provide a theoretical basis for those researchers who have just dabbled in the field of surface plasmons and help them to master the relevant basic knowledge quickly.
-
Keywords:
- metal optical properties /
- plasmon modes /
- dynamic process /
- coupling theory
[1] Fang Z, Zhu X 2013 Adv. Mater. 25 3840
Google Scholar
[2] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
Google Scholar
[3] Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 4 1600430
Google Scholar
[4] Lu D, Liu Z 2012 Nat. Commun. 3 1205
Google Scholar
[5] Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801
Google Scholar
[6] Søndergaard T, Bozhevolnyi S I, Beermann J, Novikov S M, Devaux E, Ebbesen T W 2010 Nano Lett. 10 291
Google Scholar
[7] Gramotnev D K, Bozhevolnyi S I 2013 Nat. Photon. 8 13
[8] Zhu Y, Yuan W, Sun H, Yu Y 2017 Nanomaterials 7 221
Google Scholar
[9] 李盼 2019 68 146201
Google Scholar
Li P 2019 Acta Phys. Sin. 68 146201
Google Scholar
[10] Zhang S, Li G C, Chen Y, Zhu X, Liu S D, Lei D Y, Duan H 2016 ACS Nano 10 11105
Google Scholar
[11] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392
Google Scholar
[12] Wang X, Zhu X, Shi H, Chen Y, Chen Z, Zeng Y, Tang Z, Duan H 2018 ACS Appl. Mater. Inter. 10 35607
Google Scholar
[13] Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342
Google Scholar
[14] Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators, B 54 3
Google Scholar
[15] Liedberg B, Nylander C, Lunström I 1983 Sens. Actuators 4 299
Google Scholar
[16] Linic S, Christopher P, Ingram D B 2011 Nat. Mater. 10 911
Google Scholar
[17] Thomann I, Pinaud B A, Chen Z, Clemens B M, Jaramillo T F, Brongersma M L 2011 Nano Lett. 11 3440
Google Scholar
[18] Morfa A J, Rowlen K L, III T H R, Romero M J, van de Lagemaat J 2008 Appl. Phys. Lett. 92 013504
Google Scholar
[19] Song J, Yang X, Jacobson O, Lin L, Huang P, Niu G, Ma Q, Chen X 2015 ACS Nano 9 9199
Google Scholar
[20] Yanase Y, Hiragun T, Ishii K, Kawaguchi T, Yanase T, Kawai M, Sakamoto K, Hide M 2014 Sensors 14 4948
Google Scholar
[21] Drude P 1900 Ann. Phys. 306 566
Google Scholar
[22] Mie G 1908 Ann. Phys. 330 377
Google Scholar
[23] Fano U 1941 J. Opt. Soc. Am. 31 213
Google Scholar
[24] Rechberger W, Hohenau A, Leitner A, Krenn J R, Lamprecht B, Aussenegg F R 2003 Opt. Commun. 220 137
Google Scholar
[25] Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419
Google Scholar
[26] Engheta N, Salandrino A, Alù A 2005 Phys. Rev. Lett. 95 095504
Google Scholar
[27] Pitarke J M, Silkin V M, Chulkov E V, Echenique P M 2007 Rep. Prog. Phys. 70 1
[28] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer Science & Business Media) pp5−101
[29] 方容川 2001 固体光谱学(合肥: 中国科学技术大学出版社) 第1−21页
Fang R C 2001 Solid Spectroscopy (Hefei: University of Science and Technology of China Press) pp1−21 (in Chinese)
[30] Vial A, Grimault A S, Macías D, Barchiesi D, de la Chapelle M L 2005 Phys. Rev. B 71 085416
Google Scholar
[31] Hu H 2013 Ph. D. Dissertation (Singapore: Nanyang Thechnological University)
[32] Kleinman S L, Ringe E, Valley N, Wustholz K L, Phillips E, Scheidt K A, Schatz G C, van Duyne R P 2011 J. Am. Chem. Soc. 133 4115
Google Scholar
[33] Kumar K, Duan H, Hegde R S, Koh S C W, Wei J N, Yang J K W 2012 Nat. Nanotechnol. 7 557
Google Scholar
[34] Zhang X, Liu Z 2008 Nat. Mater. 7 435
Google Scholar
[35] Willets K A, Duyne R P V 2007 Annu. Rev. Phys. Chem. 58 267
Google Scholar
[36] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin, Heidelberg: Springer) pp4−39
[37] Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20
[38] 张文君, 高龙, 魏红, 徐红星 2019 68 147302
Google Scholar
Zhang W J, Gao L, Wei H, Xu H X 2019 Acta Phys. Sin. 68 147302
Google Scholar
[39] Otto A 1968 Z. Physik 216 398
Google Scholar
[40] Maier S A, Barclay P E, Johnson T J, Friedman M D, Painter O 2004 Appl. Phys. Lett. 84 3990
Google Scholar
[41] Zhou W, Gao H, Odom T W 2010 ACS Nano 4 1241
Google Scholar
[42] Ditlbacher H, Krenn J R, Felidj N, Lamprecht B, Schider G, Salerno M, Leitner A, Aussenegg F R 2002 Appl. Phys. Lett. 80 404
Google Scholar
[43] Bouhelier A, Wiederrecht G P 2005 Opt. Lett. 30 884
Google Scholar
[44] Kim C S, Vurgaftman I, Flynn R A, Kim M, Lindle J R, Bewley W W, Bussmann K, Meyer J R, Long J P 2010 Opt. Express 18 10609
Google Scholar
[45] Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl D W 1996 Phys. Rev. Lett. 77 1889
Google Scholar
[46] Homola J 2008 Chem. Rev. 108 462
Google Scholar
[47] Murray W A, Barnes W L 2007 Adv. Mater. 19 3771
Google Scholar
[48] Hartland G V 2011 Chem. Rev. 111 3858
Google Scholar
[49] Link S, El-Sayed M A 1999 J. Phys. Chem. B 103 8410
Google Scholar
[50] Hulst H C, Hulst H C V D 1957 Light Scattering by Small Particles (New York: Dover Publications, Inc.) pp114−128
[51] Bohren C F, Huffman D R 2008 Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons) pp287−428
[52] Meier M, Wokaun A 1983 Opt. Lett. 8 581
Google Scholar
[53] Wokaun A, Gordon J P, Liao P F 1982 Phys. Rev. Lett. 48 957
Google Scholar
[54] Kreibig U 1976 Appl. Phys. 10 255
Google Scholar
[55] Kreibig U, Vollmer M 2013 Optical Properties of Metal Clusters (New York: Springer Science & Business Media) pp14−193
[56] Coronado E A, Schatz G C 2003 J. Chem. Phys. 119 3926
Google Scholar
[57] Gans R 1912 Ann. Phys. 342 881
Google Scholar
[58] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元 2019 68 147401
Google Scholar
Qin K, Yuan L R, Tan J, Peng S, Wang Q J, Zhang X J, Lu Y Q, Zhu Y Y 2019 Acta Phys. Sin. 68 147401
Google Scholar
[59] Bozhevolnyi S I, Erland J, Leosson K, Skovgaard P M W, Hvam J M 2001 Phys. Rev. Lett. 86 3008
Google Scholar
[60] Weeber J C, Dereux A, Girard C, Krenn J R, Goudonnet J P 1999 Phys. Rev. B 60 9061
Google Scholar
[61] Ditlbacher H, Krenn J R, Schider G, Leitner A, Aussenegg F R 2002 Appl. Phys. Lett. 81 1762
Google Scholar
[62] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高 2019 68 147304
Google Scholar
Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 147304
Google Scholar
[63] Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913
Google Scholar
[64] Pendry J B, Martín-Moreno L, Garcia-Vidal F J 2004 Science 305 847
Google Scholar
[65] Ng B, Wu J, Hanham S M, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M, Maier S A 2013 Adv. Optical Mater. 1 543
Google Scholar
[66] Chen L, Xu N, Singh L, Cui T, Singh R, Zhu Y, Zhang W 2017 Adv. Optical Mater. 5 1600960
Google Scholar
[67] Rusina A, Durach M, Stockman M I 2010 Appl. Phys. A 100 375
Google Scholar
[68] Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P 2002 Phys. Rev. Lett. 88 077402
Google Scholar
[69] Wang F, Shen Y R 2006 Phys. Rev. Lett. 97 206806
Google Scholar
[70] Zhang W, Fang Z, Zhu X 2017 Chem. Rev. 117 5095
Google Scholar
[71] Heilweil E J, Hochstrasser R M 1985 J. Chem. Phys. 82 4762
Google Scholar
[72] Tabor C, van Haute D, El-Sayed M A 2009 ACS Nano 3 3670
Google Scholar
[73] Noguez C 2007 J. Phys. Chem. C 111 3806
Google Scholar
[74] Törmä P, Barnes W L 2015 Rep. Prog. Phys. 78 013901
[75] Hentschel M, Utikal T, Giessen H, Lippitz M 2012 Nano Lett. 12 3778
Google Scholar
[76] Packard B Z, Toptygin D D, Komoriya A, Brand L 1998 J. Phys. Chem. B 102 752
Google Scholar
[77] Liu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H 2007 Adv. Mater. 19 3628
Google Scholar
[78] Vogel N, Fischer J, Mohammadi R, Retsch M, Butt H J, Landfester K, Weiss C K, Kreiter M 2011 Nano Lett. 11 446
Google Scholar
[79] Simoncelli S, Li Y, Cortés E, Maier S A 2018 Nano Lett. 18 3400
Google Scholar
[80] Duan H, Fernández-Domínguez A I, Bosman M, Maier S A, Yang J K W 2012 Nano Lett. 12 1683
Google Scholar
[81] Zu S, Han T, Jiang M, Liu Z, Jiang Q, Lin F, Zhu X, Fang Z 2019 Nano Lett. 19 775
Google Scholar
[82] Han T, Zu S, Li Z, Jiang M, Zhu X, Fang Z 2018 Nano Lett. 18 567
Google Scholar
[83] Liu Z, Jiang M, Hu Y, Lin F, Shen B, Zhu X, Fang Z 2018 Opto-Electron. Adv. 1 180007
[84] Zu S, Han T, Jiang M, Lin F, Zhu X, Fang Z 2018 ACS Nano 12 3908
Google Scholar
[85] Liu H, Li T, Wang S, Zhu S 2010 Front. Phys. China 5 277
Google Scholar
[86] Jain P K, Huang W, El-Sayed M A 2007 Nano Lett. 7 2080
Google Scholar
[87] Jain P K, El-Sayed M A 2007 Nano Lett. 7 2854
Google Scholar
[88] Jain P K, El-Sayed M A 2008 J. Phys. Chem. C 112 4954
Google Scholar
[89] Chen H, Shao L, Li Q, Wang J 2013 Chem. Soc. Rev. 42 2679
Google Scholar
[90] Zhu X, Chen Y, Shi H, Zhang S, Liu Q, Duan H 2017 J. Appl. Phys. 121 213105
Google Scholar
[91] Fano U 1961 Phys. Rev. 124 1866
Google Scholar
[92] Faist J, Capasso F, Sirtori C, West K W, Pfeiffer L N 1997 Nature 390 589
Google Scholar
[93] Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov V V, Dorpe P V, Nordlander P, Maier S A 2009 Nano Lett. 9 1663
Google Scholar
[94] Alzar C L G, Martinez M A G, Nussenzveig P 2002 Am. J. Phys. 70 37
Google Scholar
[95] Fan J A, Bao K, Wu C, Bao J, Bardhan R, Halas N J, Manoharan V N, Shvets G, Nordlander P, Capasso F 2010 Nano Lett. 10 4680
Google Scholar
[96] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707
Google Scholar
[97] Dong Z G, Liu H, Xu M X, Li T, Wang S M, Cao J X, Zhu S N, Zhang X 2010 Opt. Express 18 22412
Google Scholar
[98] Zhu X, Yang Z, Chen Y, Duan H 2015 Plasmonics 10 1013
Google Scholar
[99] Zhang Y, Li T, Zeng B, Zhang H, Lv H, Huang X, Zhang W, Azad A K 2015 Nanoscale 7 12682
Google Scholar
[100] Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photonics 11 543
Google Scholar
-
图 3 (a)金属全频色散关系; (b)金属和电介质的介电常数与入射频率之间的关系(借鉴中国科学院大学董国艳老师《纳米光学》第十讲图)
Fig. 3. (a) Full frequency dispersion relation of metal materials; (b) relationship between incident frequency and dielectric constant of metal and dielectric, respectively (from the tenth lecture of 《Nano Optics》, Dong Guoyan, Chinese Academy of Sciences)
图 6 (a)谐振子间耦合示意图[73]; (b)谐振子与其镜像耦合示意图[73]; (c)耦合的简谐振子[74]; (d)三次谐波产生对应的等离激元非线性谐振模型[75]
Fig. 6. (a) Inter-coupling of harmonic oscillators[73]; (b) harmonic oscillator coupled with its mirror image[73]; (c) two coupled harmonic oscillators[74]; (d) a nonlinear harmonic oscillators model of the plasmon third harmonic generation[75].
图 7 (a)表面等离激元共振模式杂化过程图; (b)堆叠式金属带的透射光谱及表面等离激元杂化示意图[77]; (c)单一劈裂盘阵列的透射光谱及其对应的共振模式杂化图[10]; (d)双层月牙形结构的模式杂化[78]; (e)杂化模式成像[79]
Fig. 7. (a) Hybridization process between two surface plasmon resonance modes; (b) the transmission spectrum of stacked cut-wire metamaterials and its corresponding plasmon hybridization process; (c) the transmission spectra and plasmon hybridization process of single split-disk; (d) the plasmon hybridization of stacked double crescents arrays; (e) the super-resolution imaging of hybrid plasmon mode.
图 8 (a) Simpson-Peterson模型物理量分布图; (b)不同角度的耦合及对应的消光光谱[72]; (c)不同排布金纳米棒的耦合及潜在应用[89]; (d)不同偶极中心偏移量下耦合能量随角度的变化曲线[90]
Fig. 8. (a) Relationship of physical quantity in Simpson-Peterson model; (b) the coupling at different angles and their corresponding extinction spectra[72]; (c) the coupling and potential applications of different arrangements in gold nanorods system[89]; (d) coupling energy versus angle for different dipole center offsets[90].
图 9 (a)表面等离激元共振诱导Fano共振的过程示意图; (b)固体金属球的米氏散射[96]; (c)不同结构配置的透射系数谱及标定位置对应的电场分布[99]; (d) Fano参数与相移关系及对应的Fano响应函数[100]
Fig. 9. (a) Process of surface plasmon resonance inducing Fano resonance; (b) Mie scattering against a solid metallic sphere[96]; (c) the transmission coefficient spectra of different structural configurations and the electric field distribution corresponding to the calibration position[99]; (d) Fano parameter versus phase shift and the Fano response function[100].
-
[1] Fang Z, Zhu X 2013 Adv. Mater. 25 3840
Google Scholar
[2] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
Google Scholar
[3] Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 4 1600430
Google Scholar
[4] Lu D, Liu Z 2012 Nat. Commun. 3 1205
Google Scholar
[5] Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801
Google Scholar
[6] Søndergaard T, Bozhevolnyi S I, Beermann J, Novikov S M, Devaux E, Ebbesen T W 2010 Nano Lett. 10 291
Google Scholar
[7] Gramotnev D K, Bozhevolnyi S I 2013 Nat. Photon. 8 13
[8] Zhu Y, Yuan W, Sun H, Yu Y 2017 Nanomaterials 7 221
Google Scholar
[9] 李盼 2019 68 146201
Google Scholar
Li P 2019 Acta Phys. Sin. 68 146201
Google Scholar
[10] Zhang S, Li G C, Chen Y, Zhu X, Liu S D, Lei D Y, Duan H 2016 ACS Nano 10 11105
Google Scholar
[11] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392
Google Scholar
[12] Wang X, Zhu X, Shi H, Chen Y, Chen Z, Zeng Y, Tang Z, Duan H 2018 ACS Appl. Mater. Inter. 10 35607
Google Scholar
[13] Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342
Google Scholar
[14] Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators, B 54 3
Google Scholar
[15] Liedberg B, Nylander C, Lunström I 1983 Sens. Actuators 4 299
Google Scholar
[16] Linic S, Christopher P, Ingram D B 2011 Nat. Mater. 10 911
Google Scholar
[17] Thomann I, Pinaud B A, Chen Z, Clemens B M, Jaramillo T F, Brongersma M L 2011 Nano Lett. 11 3440
Google Scholar
[18] Morfa A J, Rowlen K L, III T H R, Romero M J, van de Lagemaat J 2008 Appl. Phys. Lett. 92 013504
Google Scholar
[19] Song J, Yang X, Jacobson O, Lin L, Huang P, Niu G, Ma Q, Chen X 2015 ACS Nano 9 9199
Google Scholar
[20] Yanase Y, Hiragun T, Ishii K, Kawaguchi T, Yanase T, Kawai M, Sakamoto K, Hide M 2014 Sensors 14 4948
Google Scholar
[21] Drude P 1900 Ann. Phys. 306 566
Google Scholar
[22] Mie G 1908 Ann. Phys. 330 377
Google Scholar
[23] Fano U 1941 J. Opt. Soc. Am. 31 213
Google Scholar
[24] Rechberger W, Hohenau A, Leitner A, Krenn J R, Lamprecht B, Aussenegg F R 2003 Opt. Commun. 220 137
Google Scholar
[25] Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419
Google Scholar
[26] Engheta N, Salandrino A, Alù A 2005 Phys. Rev. Lett. 95 095504
Google Scholar
[27] Pitarke J M, Silkin V M, Chulkov E V, Echenique P M 2007 Rep. Prog. Phys. 70 1
[28] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer Science & Business Media) pp5−101
[29] 方容川 2001 固体光谱学(合肥: 中国科学技术大学出版社) 第1−21页
Fang R C 2001 Solid Spectroscopy (Hefei: University of Science and Technology of China Press) pp1−21 (in Chinese)
[30] Vial A, Grimault A S, Macías D, Barchiesi D, de la Chapelle M L 2005 Phys. Rev. B 71 085416
Google Scholar
[31] Hu H 2013 Ph. D. Dissertation (Singapore: Nanyang Thechnological University)
[32] Kleinman S L, Ringe E, Valley N, Wustholz K L, Phillips E, Scheidt K A, Schatz G C, van Duyne R P 2011 J. Am. Chem. Soc. 133 4115
Google Scholar
[33] Kumar K, Duan H, Hegde R S, Koh S C W, Wei J N, Yang J K W 2012 Nat. Nanotechnol. 7 557
Google Scholar
[34] Zhang X, Liu Z 2008 Nat. Mater. 7 435
Google Scholar
[35] Willets K A, Duyne R P V 2007 Annu. Rev. Phys. Chem. 58 267
Google Scholar
[36] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin, Heidelberg: Springer) pp4−39
[37] Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20
[38] 张文君, 高龙, 魏红, 徐红星 2019 68 147302
Google Scholar
Zhang W J, Gao L, Wei H, Xu H X 2019 Acta Phys. Sin. 68 147302
Google Scholar
[39] Otto A 1968 Z. Physik 216 398
Google Scholar
[40] Maier S A, Barclay P E, Johnson T J, Friedman M D, Painter O 2004 Appl. Phys. Lett. 84 3990
Google Scholar
[41] Zhou W, Gao H, Odom T W 2010 ACS Nano 4 1241
Google Scholar
[42] Ditlbacher H, Krenn J R, Felidj N, Lamprecht B, Schider G, Salerno M, Leitner A, Aussenegg F R 2002 Appl. Phys. Lett. 80 404
Google Scholar
[43] Bouhelier A, Wiederrecht G P 2005 Opt. Lett. 30 884
Google Scholar
[44] Kim C S, Vurgaftman I, Flynn R A, Kim M, Lindle J R, Bewley W W, Bussmann K, Meyer J R, Long J P 2010 Opt. Express 18 10609
Google Scholar
[45] Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl D W 1996 Phys. Rev. Lett. 77 1889
Google Scholar
[46] Homola J 2008 Chem. Rev. 108 462
Google Scholar
[47] Murray W A, Barnes W L 2007 Adv. Mater. 19 3771
Google Scholar
[48] Hartland G V 2011 Chem. Rev. 111 3858
Google Scholar
[49] Link S, El-Sayed M A 1999 J. Phys. Chem. B 103 8410
Google Scholar
[50] Hulst H C, Hulst H C V D 1957 Light Scattering by Small Particles (New York: Dover Publications, Inc.) pp114−128
[51] Bohren C F, Huffman D R 2008 Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons) pp287−428
[52] Meier M, Wokaun A 1983 Opt. Lett. 8 581
Google Scholar
[53] Wokaun A, Gordon J P, Liao P F 1982 Phys. Rev. Lett. 48 957
Google Scholar
[54] Kreibig U 1976 Appl. Phys. 10 255
Google Scholar
[55] Kreibig U, Vollmer M 2013 Optical Properties of Metal Clusters (New York: Springer Science & Business Media) pp14−193
[56] Coronado E A, Schatz G C 2003 J. Chem. Phys. 119 3926
Google Scholar
[57] Gans R 1912 Ann. Phys. 342 881
Google Scholar
[58] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元 2019 68 147401
Google Scholar
Qin K, Yuan L R, Tan J, Peng S, Wang Q J, Zhang X J, Lu Y Q, Zhu Y Y 2019 Acta Phys. Sin. 68 147401
Google Scholar
[59] Bozhevolnyi S I, Erland J, Leosson K, Skovgaard P M W, Hvam J M 2001 Phys. Rev. Lett. 86 3008
Google Scholar
[60] Weeber J C, Dereux A, Girard C, Krenn J R, Goudonnet J P 1999 Phys. Rev. B 60 9061
Google Scholar
[61] Ditlbacher H, Krenn J R, Schider G, Leitner A, Aussenegg F R 2002 Appl. Phys. Lett. 81 1762
Google Scholar
[62] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高 2019 68 147304
Google Scholar
Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 147304
Google Scholar
[63] Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913
Google Scholar
[64] Pendry J B, Martín-Moreno L, Garcia-Vidal F J 2004 Science 305 847
Google Scholar
[65] Ng B, Wu J, Hanham S M, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M, Maier S A 2013 Adv. Optical Mater. 1 543
Google Scholar
[66] Chen L, Xu N, Singh L, Cui T, Singh R, Zhu Y, Zhang W 2017 Adv. Optical Mater. 5 1600960
Google Scholar
[67] Rusina A, Durach M, Stockman M I 2010 Appl. Phys. A 100 375
Google Scholar
[68] Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P 2002 Phys. Rev. Lett. 88 077402
Google Scholar
[69] Wang F, Shen Y R 2006 Phys. Rev. Lett. 97 206806
Google Scholar
[70] Zhang W, Fang Z, Zhu X 2017 Chem. Rev. 117 5095
Google Scholar
[71] Heilweil E J, Hochstrasser R M 1985 J. Chem. Phys. 82 4762
Google Scholar
[72] Tabor C, van Haute D, El-Sayed M A 2009 ACS Nano 3 3670
Google Scholar
[73] Noguez C 2007 J. Phys. Chem. C 111 3806
Google Scholar
[74] Törmä P, Barnes W L 2015 Rep. Prog. Phys. 78 013901
[75] Hentschel M, Utikal T, Giessen H, Lippitz M 2012 Nano Lett. 12 3778
Google Scholar
[76] Packard B Z, Toptygin D D, Komoriya A, Brand L 1998 J. Phys. Chem. B 102 752
Google Scholar
[77] Liu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H 2007 Adv. Mater. 19 3628
Google Scholar
[78] Vogel N, Fischer J, Mohammadi R, Retsch M, Butt H J, Landfester K, Weiss C K, Kreiter M 2011 Nano Lett. 11 446
Google Scholar
[79] Simoncelli S, Li Y, Cortés E, Maier S A 2018 Nano Lett. 18 3400
Google Scholar
[80] Duan H, Fernández-Domínguez A I, Bosman M, Maier S A, Yang J K W 2012 Nano Lett. 12 1683
Google Scholar
[81] Zu S, Han T, Jiang M, Liu Z, Jiang Q, Lin F, Zhu X, Fang Z 2019 Nano Lett. 19 775
Google Scholar
[82] Han T, Zu S, Li Z, Jiang M, Zhu X, Fang Z 2018 Nano Lett. 18 567
Google Scholar
[83] Liu Z, Jiang M, Hu Y, Lin F, Shen B, Zhu X, Fang Z 2018 Opto-Electron. Adv. 1 180007
[84] Zu S, Han T, Jiang M, Lin F, Zhu X, Fang Z 2018 ACS Nano 12 3908
Google Scholar
[85] Liu H, Li T, Wang S, Zhu S 2010 Front. Phys. China 5 277
Google Scholar
[86] Jain P K, Huang W, El-Sayed M A 2007 Nano Lett. 7 2080
Google Scholar
[87] Jain P K, El-Sayed M A 2007 Nano Lett. 7 2854
Google Scholar
[88] Jain P K, El-Sayed M A 2008 J. Phys. Chem. C 112 4954
Google Scholar
[89] Chen H, Shao L, Li Q, Wang J 2013 Chem. Soc. Rev. 42 2679
Google Scholar
[90] Zhu X, Chen Y, Shi H, Zhang S, Liu Q, Duan H 2017 J. Appl. Phys. 121 213105
Google Scholar
[91] Fano U 1961 Phys. Rev. 124 1866
Google Scholar
[92] Faist J, Capasso F, Sirtori C, West K W, Pfeiffer L N 1997 Nature 390 589
Google Scholar
[93] Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov V V, Dorpe P V, Nordlander P, Maier S A 2009 Nano Lett. 9 1663
Google Scholar
[94] Alzar C L G, Martinez M A G, Nussenzveig P 2002 Am. J. Phys. 70 37
Google Scholar
[95] Fan J A, Bao K, Wu C, Bao J, Bardhan R, Halas N J, Manoharan V N, Shvets G, Nordlander P, Capasso F 2010 Nano Lett. 10 4680
Google Scholar
[96] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707
Google Scholar
[97] Dong Z G, Liu H, Xu M X, Li T, Wang S M, Cao J X, Zhu S N, Zhang X 2010 Opt. Express 18 22412
Google Scholar
[98] Zhu X, Yang Z, Chen Y, Duan H 2015 Plasmonics 10 1013
Google Scholar
[99] Zhang Y, Li T, Zeng B, Zhang H, Lv H, Huang X, Zhang W, Azad A K 2015 Nanoscale 7 12682
Google Scholar
[100] Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photonics 11 543
Google Scholar
计量
- 文章访问数: 31661
- PDF下载量: 1635
- 被引次数: 0