-
According to density functional theory of first-principles calculation theory, we study systematically the structure, magnetism, electronic and optical properties of Mn-doped LiNbO3. The enthalpies of formation of LiNbO3, when substituting Li and Nb with Mn, are -8.340 and -8.0062 eV/atom, respectively. This means that the LiNbO3 after substitution of Li with Mn is more stable than that of Nb with Mn. And the magnetic moments of LiNbO3 in the substitution of Li with Mn is higher than that in substitution of Nb with Mn. Results of the density of states calculation show that the magnetism comes from Mn atom, and its magnetic moments is 4.3 μB. The rest of the magnetic moments may come from the contribution of the O and Nb atoms, because of the interactions of Mn-3d orbit with the O-2p and Nb-4d orbits. Optical absorption spectra show an improved optical response in the visible range in LiNbO3 by substituting Li with Mn. Results of analysis of oxygen vacancy in LiNbO3 show that oxygen vacancy can improve the magnetic moments of Mn-doped LiNbO3 system.
-
Keywords:
- first principle /
- LiNbO3 /
- Mn-doped /
- optical absorption
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S von, Roukes M L, Chtchelkanova A Y, Trefler D M 2001 Science 294 1488
[2] Zutié 1, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323
[3] Xiao Z L, Shi L B 2011 Acta Phys. Sin. 60 027502 (in Chinese) [肖振林, 史力斌 2011 60 027502]
[4] Song C, Zeng F, Shen Y X, Geng K W, Xie Y N, Wu Z Y, Pan F 2006 Phys. Rev. B 73 172412
[5] Chen C, Zeng F, Li J H Sheng P, Luo J T, Yang Y C, Pan F, Zou Y, Huang Y Y, Jiang Z 2011 Thin. Solid Films 520 764
[6] Song C, Wang C Z, Liu X J, Zeng F, Pan F 2009 Crystal Growth and Design 9 1235
[7] Song C, Wang C Z, Liu X J, Zeng F, Pan F 2008 Appl. Phys. Lett. 92 262901
[8] Paul M, Tabuchi M, West A R 1997 Chem. Mater. 9 3026
[9] Cao E, Zhang Y, Qin H, Zhang L, Hu J 2013 Physica B 410 68
[10] Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943
[11] Huang D H, Yang J S, Cao Q L, Wan M J, Li Q, Sun L, Wang F H 2014 Chin. Phys. Lett. 31 037103
[12] Perdew J P, Burke S, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[13] Xu H X, Chernatynskiy A, Lee D 2010 Phys. Rev. B 82 184109
[14] Shi L B, Jin J W, Zhang T Q 2010 Chin. Phys.B 19 127001
[15] Adibi A, Buse K, Psalti s D 2000 Opt. Lett. 25 539
[16] Li X C, Wang L Z, Liu H D 2010 Spectro sco py and Spectr al Analy. sis. 30 1035
-
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S von, Roukes M L, Chtchelkanova A Y, Trefler D M 2001 Science 294 1488
[2] Zutié 1, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323
[3] Xiao Z L, Shi L B 2011 Acta Phys. Sin. 60 027502 (in Chinese) [肖振林, 史力斌 2011 60 027502]
[4] Song C, Zeng F, Shen Y X, Geng K W, Xie Y N, Wu Z Y, Pan F 2006 Phys. Rev. B 73 172412
[5] Chen C, Zeng F, Li J H Sheng P, Luo J T, Yang Y C, Pan F, Zou Y, Huang Y Y, Jiang Z 2011 Thin. Solid Films 520 764
[6] Song C, Wang C Z, Liu X J, Zeng F, Pan F 2009 Crystal Growth and Design 9 1235
[7] Song C, Wang C Z, Liu X J, Zeng F, Pan F 2008 Appl. Phys. Lett. 92 262901
[8] Paul M, Tabuchi M, West A R 1997 Chem. Mater. 9 3026
[9] Cao E, Zhang Y, Qin H, Zhang L, Hu J 2013 Physica B 410 68
[10] Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943
[11] Huang D H, Yang J S, Cao Q L, Wan M J, Li Q, Sun L, Wang F H 2014 Chin. Phys. Lett. 31 037103
[12] Perdew J P, Burke S, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[13] Xu H X, Chernatynskiy A, Lee D 2010 Phys. Rev. B 82 184109
[14] Shi L B, Jin J W, Zhang T Q 2010 Chin. Phys.B 19 127001
[15] Adibi A, Buse K, Psalti s D 2000 Opt. Lett. 25 539
[16] Li X C, Wang L Z, Liu H D 2010 Spectro sco py and Spectr al Analy. sis. 30 1035
Catalog
Metrics
- Abstract views: 7197
- PDF Downloads: 781
- Cited By: 0