Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photocatalytic application of Z-type system

Li Ping Li Hai-Jin Tu Wen-Guang Zhou Yong Zou Zhi-Gang

Citation:

Photocatalytic application of Z-type system

Li Ping, Li Hai-Jin, Tu Wen-Guang, Zhou Yong, Zou Zhi-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Z-type photocatlytic system, reflembling natural photosynthesis, consists of two different photocatalysts and a shuttle redox mediator, involving two-photon excitation process for photocatlysis. One photocatalyst as a photoreduction system offers the reduction sites by conduction band (CB) electrons, and the other photocatalyst as a photooxidation system provides the oxidation sites by valence band (VB) holes. A shuttle redox mediator as an electron conductor transfers the electrons from the CB of the photooxidation system to the VB of the photoreduction system. On the one hand, the separation of photocatalytic reactive sites is advantageous for spatial separation of the electrons and holes, which is beneficial for enhancing the photocatlytic activities. On the other hand, photoreduction system and photooxidation system of different materials effectively inhibit the reflerse reaction involvement of photoreductive and photooxidative products. The Z-type photocatlytic system simultaneously possesses a wide light absorption range and strong redox ability.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2014CB239302, 2011CB933303, 2013CB632404), the National Natural Science Foundation of China (Grant Nos. 21473091, 51272101, 51202005), the National Science Foundation of Jiangsu Province (Grant Nos. BK2012015, BK20130053), the College Postgraduate Research and Innovation Project of Jiangsu Province (Grant Nos. KYLX_0025) and the Provincial Science Key Foundation of Higher Education Institutions of Anhui (Grant Nos. KJ2011A053).
    [1]

    Chen X, Shen S, Guo L, Mao S 2010 Chem. Rev. 110 6503

    [2]

    Fujishima A, Honda K 1972 Nature 238 37

    [3]

    Maeda K, Domen K 2007 J. Phys. Chem. C 111 7851

    [4]

    Zhang Z, Zhang L, Hedhili M N, Zhang H, Wang P 2013 Nano Lett. 13 14

    [5]

    Wang Z, Huang B, Dai Y, Liu Y, Zhang X, Qin X, Wang J, Zheng Z, Cheng H 2012 CrystEngComm 14 1687

    [6]

    Zhou P, Yu J, Jaroniec M 2014 Adv. Mater. 26 4920

    [7]

    Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124

    [8]

    Cheng H, Huang B, Dai Y, Qin X, Zhang X 2010 Langmuir : the ACS journal of surfaces and colloids 26 6618

    [9]

    Su J, Zou X X, Li G D, Wei X, Yan C, Wang Y N, Zhao J, Zhou L J, Chen J S 2011 J. Phys. Chem. C 115 8064

    [10]

    Hou Y, Wen Z, Cui S, Guo X, Chen J 2013 Adv. Mater. 25 6291

    [11]

    Zhong M, Ma Y, Oleynikov P, Domen K, Delaunay J J 2014 Energy Environ. Sci. 7 1693

    [12]

    Tachibana Y, Vayssieres L, Durrant J R 2012 Nat. Photonics 6 511

    [13]

    Li H, Zhou Y, Tu W, Ye Y, Zou Z 2014 Adv. Funct. Mater. DOI: 10.1002adfm.201401636

    [14]

    Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y, Arakawa H 1997 Chem Phys Lett 277 387

    [15]

    Miseki Y, Fujiyoshi S, Gunji T, Sayama K 2013 Catal. Sci. Technol. 3 1750

    [16]

    Zhu H, Yang B, Xu J, Fu Z, Wen M, Guo T, Fu S, Zuo J, Zhang S 2009 Applied Catalysis B: Environmental 90 463

    [17]

    Fujihara K, Ohno T, Matsumura M 1998 J. Chem. Soc. Faraday Trans. 94 3705

    [18]

    Kato H, Hori M, Konta R, Shimodaira Y, Kudo A 2004 Chemistry Letters 33 1348

    [19]

    Abe R, Sayama K, Sugihara H 2005 J. Phys. Chem. B 109 16052

    [20]

    Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K 2006 Nat Mater. 5 782

    [21]

    Liu C, Tang J, Chen H M, Liu B, Yang P 2013 Nano Lett. 13 2989

    [22]

    Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253

    [23]

    Sasaki Y, Nemoto H, Saito K, Kudo A 2009 J. Phys. Chem. C 113 17536

    [24]

    Kato H, Sasaki Y, Shirakura N, Kudo A 2013 J. Mater. Chem. A 1 12327

    [25]

    Zhang L, Wong K H, Chen Z, Yu J C, Zhao J, Hu C, Chan C Y, Wong P K 2009 Applied Catalysis A: General 363 221

    [26]

    Iwase A, Ng Y H, Ishiguro Y, Kudo A, Amal R 2011 J. Am. Chem. Soc. 133 11054

    [27]

    Wang X, Liu G, Wang L, Chen Z, Lu G Q, Cheng H 2012 Adv. Energy Mater. 2 42

    [28]

    Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H 2001 Chem. Commu. 2416

    [29]

    Abe R, Sayama K, Domen K, Arakawa H 2001 Chemical Physics Letters 344 339

    [30]

    Abe R, Takata T, Sugihara H, Domen K 2005 Chem. Commun. 3829

    [31]

    Kim H G, Jeong E D, Borse P H, Jeon S, Yong K, Lee J S, Li W, Oh S H 2006 Appl. Phys. Lett. 89 064103

    [32]

    Sayama K, Abe R, Arakawa H, Sugihara H 2006 Catalysis Communications 7 96

    [33]

    Maeda K, Terashima H, Kase K, Higashi M, Tabata M, Domen K 2008 Bull. Chem. Soc. Jpn 81 927

    [34]

    Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K 2008 Chemical Physics Letters 452 120

    [35]

    Sasaki Y, Iwase A, Kato H, Kudo A 2008 Journal of Catalysis 259 133

    [36]

    Abe R, Shinmei K, Hara K, Ohtani B 2009 Chem. Commun. 3577

    [37]

    Maeda K, Higashi M, Lu D, Abe R, Domen K 2010 J. Am. Chem. Soc. 132 5858

    [38]

    Tabata M, Maeda K, Higashi M, Lu D, Takata T, Abe R, Domen K 2010 Langmuir : the ACS journal of surfaces and colloids 26 9161

    [39]

    Yun H J, Lee H, Kim N D, Lee D M, Yu S, Yi J 2011 ACS Nano 5 4084

    [40]

    Maeda K, Abe R, Domen K 2011 J. Phys. Chem. C 115 3057

    [41]

    Hara S, Yoshimizu M, Tanigawa S, Ni L, Ohtani B, Irie H 2012 J. Phys. Chem. C 116 17458

    [42]

    Ma S S, Maeda K, Hisatomi T, Tabata M, Kudo A, Domen K 2013 Chem. Eur. J. 19 7480

    [43]

    Sasaki Y, Kato H, Kudo A 2013 J. Am. Chem. Soc. 135 5441

    [44]

    Ding L, Zhou H, Lou S, Ding J, Zhang D, Zhu H, Fan T 2013 Int J Hydrogen Energy 38 8244

    [45]

    Zhao W, Maeda K, Zhang F, Hisatomi T, Domen K 2014 Phys.Chem.Chem.Phys., 16 12051

    [46]

    Tu W, Zhou Y, Liu Q, Tian Z, Gao J, Chen X, Zhang H, Liu J, Zou Z 2012 Adv. Funct. Mater. 22 1215

    [47]

    Li P, Zhou Y, Tu W, Wang R, Zhang C, Liu Q, Li H, Li Z, Dai H, Wang J, Yan S, Zou Z 2013 CrystEngComm 15 9855

    [48]

    Wang F, Zhou Y, Li P, Li H, Tu W, Yan S, Zou Z 2014 RSC Adv. 4 43172

    [49]

    Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K 2013 Angew. Chem. Int. Ed. 52 7372

    [50]

    Li P, Zhou Y, Tu W, Liu Q, Yan S, Zou Z 2013 ChemPlusChem 78 274

    [51]

    Inoue T, Fujishima A, Konishi S, Honda K 1979 Nature 277 637

    [52]

    Tu W, Zhou Y, Liu Q, Yan S, Bao S, Wang X, Xiao M, Zou Z 2013 Adv. Funct. Mater. 23 1743

    [53]

    Sato S, Arai T, Morikawa T, Uemura K, Suzuki T M, Tanaka H, Kajino T 2011 J. Am. Chem. Soc. 133 15240

    [54]

    Arai T, Sato S, Kajino T, Morikawa T 2013 Energy Environ. Sci. 6 1274

    [55]

    Qin S, Xin F, Liu Y, Yin X, Ma W 2011 Journal of colloid and interface science 356 257

    [56]

    Li P, Zhou Y, Li H, Xu Q, Meng X, Wang X, Xiao M, Zou Z 2009 Energy Environ. Sci 2 745

    [57]

    Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O 2013 J. Am. Chem. Soc. 135 4596

    [58]

    Song G, Xin F, Chen J, Yin X 2014 Applied Catalysis A: General 473 90

    [59]

    Liu Y, Ji G, Dastageer M A, Zhu L, Wang J, Zhang B, Changa X, Gondal M A 2014 RSC Adv. 4 56961

    [60]

    Carey J H, Lawrence J, Tosine H M 1976 Bulletin of Environmental Contamination Toxlcology 16 697

    [61]

    Fujihira M, Satoh Y, Osa T 1981 Nature 293 206

    [62]

    Liu Z, Zhao Z G, Miyauchi M 2009 J. Phys. Chem. C 113 17132

    [63]

    Wang X, Li S, Ma Y, Yu H, Yu J 2011 J. Phys. Chem. C 115 14648

    [64]

    Ye L, Liu J, Gong C, Tian L, Peng T, Zan L 2012 ACS Catal. 2 1677

    [65]

    Lin H, Cao J, Luo B, Xu B, Chen S 2012 Catalysis Communications 21 91

    [66]

    Hou J, Yang C, Wang Z, Ji Q, Li Y, Huang G, Jiao S, Zhu H 2013 Applied Catalysis B: Environmental 142-143 579

    [67]

    Miyauchi M, Nukui Y, Atarashi D, Sakai E 2013 ACS Appl. Mater. Interfaces 5 9770

    [68]

    Chen Z, Wang W, Zhang Z, Fang X 2013 J. Phys. Chem. C 117 19346

    [69]

    Katsumata H, Sakai T, Suzuki T M, Kaneco S 2014 Ind. Eng. Chem. Res. 53 8018

    [70]

    Min Y, He G, Xu Q, Chen Y 2014 J. Mater. Chem. A. 2 1294

    [71]

    Cheng H, Hou J, Zhu H, Guo X M 2014 RSC Adv. 4 41622

    [72]

    Pu Y C, Lin W H, Hsu Y J 2015 Applied Catalysis B: Environmental 163 343

  • [1]

    Chen X, Shen S, Guo L, Mao S 2010 Chem. Rev. 110 6503

    [2]

    Fujishima A, Honda K 1972 Nature 238 37

    [3]

    Maeda K, Domen K 2007 J. Phys. Chem. C 111 7851

    [4]

    Zhang Z, Zhang L, Hedhili M N, Zhang H, Wang P 2013 Nano Lett. 13 14

    [5]

    Wang Z, Huang B, Dai Y, Liu Y, Zhang X, Qin X, Wang J, Zheng Z, Cheng H 2012 CrystEngComm 14 1687

    [6]

    Zhou P, Yu J, Jaroniec M 2014 Adv. Mater. 26 4920

    [7]

    Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124

    [8]

    Cheng H, Huang B, Dai Y, Qin X, Zhang X 2010 Langmuir : the ACS journal of surfaces and colloids 26 6618

    [9]

    Su J, Zou X X, Li G D, Wei X, Yan C, Wang Y N, Zhao J, Zhou L J, Chen J S 2011 J. Phys. Chem. C 115 8064

    [10]

    Hou Y, Wen Z, Cui S, Guo X, Chen J 2013 Adv. Mater. 25 6291

    [11]

    Zhong M, Ma Y, Oleynikov P, Domen K, Delaunay J J 2014 Energy Environ. Sci. 7 1693

    [12]

    Tachibana Y, Vayssieres L, Durrant J R 2012 Nat. Photonics 6 511

    [13]

    Li H, Zhou Y, Tu W, Ye Y, Zou Z 2014 Adv. Funct. Mater. DOI: 10.1002adfm.201401636

    [14]

    Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y, Arakawa H 1997 Chem Phys Lett 277 387

    [15]

    Miseki Y, Fujiyoshi S, Gunji T, Sayama K 2013 Catal. Sci. Technol. 3 1750

    [16]

    Zhu H, Yang B, Xu J, Fu Z, Wen M, Guo T, Fu S, Zuo J, Zhang S 2009 Applied Catalysis B: Environmental 90 463

    [17]

    Fujihara K, Ohno T, Matsumura M 1998 J. Chem. Soc. Faraday Trans. 94 3705

    [18]

    Kato H, Hori M, Konta R, Shimodaira Y, Kudo A 2004 Chemistry Letters 33 1348

    [19]

    Abe R, Sayama K, Sugihara H 2005 J. Phys. Chem. B 109 16052

    [20]

    Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K 2006 Nat Mater. 5 782

    [21]

    Liu C, Tang J, Chen H M, Liu B, Yang P 2013 Nano Lett. 13 2989

    [22]

    Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253

    [23]

    Sasaki Y, Nemoto H, Saito K, Kudo A 2009 J. Phys. Chem. C 113 17536

    [24]

    Kato H, Sasaki Y, Shirakura N, Kudo A 2013 J. Mater. Chem. A 1 12327

    [25]

    Zhang L, Wong K H, Chen Z, Yu J C, Zhao J, Hu C, Chan C Y, Wong P K 2009 Applied Catalysis A: General 363 221

    [26]

    Iwase A, Ng Y H, Ishiguro Y, Kudo A, Amal R 2011 J. Am. Chem. Soc. 133 11054

    [27]

    Wang X, Liu G, Wang L, Chen Z, Lu G Q, Cheng H 2012 Adv. Energy Mater. 2 42

    [28]

    Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H 2001 Chem. Commu. 2416

    [29]

    Abe R, Sayama K, Domen K, Arakawa H 2001 Chemical Physics Letters 344 339

    [30]

    Abe R, Takata T, Sugihara H, Domen K 2005 Chem. Commun. 3829

    [31]

    Kim H G, Jeong E D, Borse P H, Jeon S, Yong K, Lee J S, Li W, Oh S H 2006 Appl. Phys. Lett. 89 064103

    [32]

    Sayama K, Abe R, Arakawa H, Sugihara H 2006 Catalysis Communications 7 96

    [33]

    Maeda K, Terashima H, Kase K, Higashi M, Tabata M, Domen K 2008 Bull. Chem. Soc. Jpn 81 927

    [34]

    Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K 2008 Chemical Physics Letters 452 120

    [35]

    Sasaki Y, Iwase A, Kato H, Kudo A 2008 Journal of Catalysis 259 133

    [36]

    Abe R, Shinmei K, Hara K, Ohtani B 2009 Chem. Commun. 3577

    [37]

    Maeda K, Higashi M, Lu D, Abe R, Domen K 2010 J. Am. Chem. Soc. 132 5858

    [38]

    Tabata M, Maeda K, Higashi M, Lu D, Takata T, Abe R, Domen K 2010 Langmuir : the ACS journal of surfaces and colloids 26 9161

    [39]

    Yun H J, Lee H, Kim N D, Lee D M, Yu S, Yi J 2011 ACS Nano 5 4084

    [40]

    Maeda K, Abe R, Domen K 2011 J. Phys. Chem. C 115 3057

    [41]

    Hara S, Yoshimizu M, Tanigawa S, Ni L, Ohtani B, Irie H 2012 J. Phys. Chem. C 116 17458

    [42]

    Ma S S, Maeda K, Hisatomi T, Tabata M, Kudo A, Domen K 2013 Chem. Eur. J. 19 7480

    [43]

    Sasaki Y, Kato H, Kudo A 2013 J. Am. Chem. Soc. 135 5441

    [44]

    Ding L, Zhou H, Lou S, Ding J, Zhang D, Zhu H, Fan T 2013 Int J Hydrogen Energy 38 8244

    [45]

    Zhao W, Maeda K, Zhang F, Hisatomi T, Domen K 2014 Phys.Chem.Chem.Phys., 16 12051

    [46]

    Tu W, Zhou Y, Liu Q, Tian Z, Gao J, Chen X, Zhang H, Liu J, Zou Z 2012 Adv. Funct. Mater. 22 1215

    [47]

    Li P, Zhou Y, Tu W, Wang R, Zhang C, Liu Q, Li H, Li Z, Dai H, Wang J, Yan S, Zou Z 2013 CrystEngComm 15 9855

    [48]

    Wang F, Zhou Y, Li P, Li H, Tu W, Yan S, Zou Z 2014 RSC Adv. 4 43172

    [49]

    Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K 2013 Angew. Chem. Int. Ed. 52 7372

    [50]

    Li P, Zhou Y, Tu W, Liu Q, Yan S, Zou Z 2013 ChemPlusChem 78 274

    [51]

    Inoue T, Fujishima A, Konishi S, Honda K 1979 Nature 277 637

    [52]

    Tu W, Zhou Y, Liu Q, Yan S, Bao S, Wang X, Xiao M, Zou Z 2013 Adv. Funct. Mater. 23 1743

    [53]

    Sato S, Arai T, Morikawa T, Uemura K, Suzuki T M, Tanaka H, Kajino T 2011 J. Am. Chem. Soc. 133 15240

    [54]

    Arai T, Sato S, Kajino T, Morikawa T 2013 Energy Environ. Sci. 6 1274

    [55]

    Qin S, Xin F, Liu Y, Yin X, Ma W 2011 Journal of colloid and interface science 356 257

    [56]

    Li P, Zhou Y, Li H, Xu Q, Meng X, Wang X, Xiao M, Zou Z 2009 Energy Environ. Sci 2 745

    [57]

    Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O 2013 J. Am. Chem. Soc. 135 4596

    [58]

    Song G, Xin F, Chen J, Yin X 2014 Applied Catalysis A: General 473 90

    [59]

    Liu Y, Ji G, Dastageer M A, Zhu L, Wang J, Zhang B, Changa X, Gondal M A 2014 RSC Adv. 4 56961

    [60]

    Carey J H, Lawrence J, Tosine H M 1976 Bulletin of Environmental Contamination Toxlcology 16 697

    [61]

    Fujihira M, Satoh Y, Osa T 1981 Nature 293 206

    [62]

    Liu Z, Zhao Z G, Miyauchi M 2009 J. Phys. Chem. C 113 17132

    [63]

    Wang X, Li S, Ma Y, Yu H, Yu J 2011 J. Phys. Chem. C 115 14648

    [64]

    Ye L, Liu J, Gong C, Tian L, Peng T, Zan L 2012 ACS Catal. 2 1677

    [65]

    Lin H, Cao J, Luo B, Xu B, Chen S 2012 Catalysis Communications 21 91

    [66]

    Hou J, Yang C, Wang Z, Ji Q, Li Y, Huang G, Jiao S, Zhu H 2013 Applied Catalysis B: Environmental 142-143 579

    [67]

    Miyauchi M, Nukui Y, Atarashi D, Sakai E 2013 ACS Appl. Mater. Interfaces 5 9770

    [68]

    Chen Z, Wang W, Zhang Z, Fang X 2013 J. Phys. Chem. C 117 19346

    [69]

    Katsumata H, Sakai T, Suzuki T M, Kaneco S 2014 Ind. Eng. Chem. Res. 53 8018

    [70]

    Min Y, He G, Xu Q, Chen Y 2014 J. Mater. Chem. A. 2 1294

    [71]

    Cheng H, Hou J, Zhu H, Guo X M 2014 RSC Adv. 4 41622

    [72]

    Pu Y C, Lin W H, Hsu Y J 2015 Applied Catalysis B: Environmental 163 343

  • [1] Zhang Li-Sheng. Photocatalytic properties of gold nanoarrays driven by surface plasmon. Acta Physica Sinica, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [2] Cui Zong-Yang, Xie Zhong-Shuai, Wang Yao-Jin, Yuan Guo-Liang, Liu Jun-Ming. Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors. Acta Physica Sinica, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [3] Xiong Zi-Qian, Zhang Peng-Cheng, Kang Wen-Bin, Fang Wen-Yu. Study on the electronic structure and photocatalytic properties of a novel monolayer TiO2. Acta Physica Sinica, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [4] Fang Wen-Yu, Zhang Peng-Cheng, Zhao Jun, Kang Wen-Bin. Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe. Acta Physica Sinica, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [5] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [6] Wang Ze-Pu, Fu Nian, Yu Han, Xu Jing-Wei, He Qi, Zheng Shu-Kai, Ding Bang-Fu, Yan Xiao-Bing. Enhancing oxygen vacancy photocatalytic efficiency of bismuth tungstate using In-doped W site. Acta Physica Sinica, 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [7] Tao Ze-Hua, Dong Hai-Ming, Duan Yi-Feng. Photon-excited carriers and emission of graphene in terahertz radiation fields. Acta Physica Sinica, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [8] Shao Zi-Qiao, Bi Heng-Chang, Xie Xiao, Wan Neng, Sun Li-Tao. Photocatalytic activity of tungsten trioxide/silver oxide composite under visible light irradiation for methylene blue degradation. Acta Physica Sinica, 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [9] He Jin-Yun, Peng Dai-Jiang, Wang Yan-Wu, Long Fei, Zou Zheng-Guang. First principle calculation and photocatalytic performance of BixWO6 (1.81 ≤ x ≤ 2.01) with oxygen vacancies. Acta Physica Sinica, 2018, 67(6): 066801. doi: 10.7498/aps.67.20172287
    [10] Wu Hua-Ping, Ling Huan, Zhang Zheng, Li Yan-Biao, Liang Li-Hua, Chai Guo-Zhong. Research progress on photocatalytic activity of ferroelectric materials. Acta Physica Sinica, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [11] Ye Peng-Fei, Chen Hai-Tao, Bu Liang-Min, Zhang Kun, Han Jiu-Rong. Synthesis of SnO2 quantum dots/graphene composite and its photocatalytic performance. Acta Physica Sinica, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [12] Li Pei-Xin, Feng Ming-Yang, Wu Cai-Ping, Li Shao-Bo, Hou Lei-Tian, Ma Jia-Sai, Yin Chun-Hao. Study on the photocatalytic mechanism of tio2 sensitized by zinc porphyrin. Acta Physica Sinica, 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [13] Huang Dan, Ju Zhi-Ping, Li Chang-Sheng, Yao Chun-Mei, Guo Jin. First-principles study of Ag2ZnSnS4 as a photocatalyst. Acta Physica Sinica, 2014, 63(24): 247101. doi: 10.7498/aps.63.247101
    [14] Zhao Juan, Hu Hui-Fang, Zeng Ya-Ping, Cheng Cai-Ping. Preparation of flower-like CuS hierarchical nanostructures and its visible light photocatalytic performance. Acta Physica Sinica, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [15] Gui Qing-Feng, Cui Lei, Pan Jing, Hu Jing-Guo. Photocatalysis property of V-N codoped wurtzite ZnO by first-principles study. Acta Physica Sinica, 2013, 62(8): 087103. doi: 10.7498/aps.62.087103
    [16] Liu Fang, Jiang Zhen-Yi. First-principles study on the electronic and optical properties of the (Eu,N)-codoped anatase TiO2 photocatalyst. Acta Physica Sinica, 2013, 62(19): 193103. doi: 10.7498/aps.62.193103
    [17] Liang Pei, Wang Le, Xiong Si-Yu, Dong Qian-Min, Li Xiao-Yan. Research on the photocatalysis synergistic effect of Mo-X(B, C, N, O, F) codoped TiO2. Acta Physica Sinica, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [18] Qi Hong-Fei, Liu Da-Bo, Cheng Bo, Hao Wei-Chang, Wang Tian-Min. Ag antidot array modified TiO2 film and its photocatalysis performance. Acta Physica Sinica, 2012, 61(22): 228201. doi: 10.7498/aps.61.228201
    [19] Zhao Zong-Yan, Liu Qing-Ju, Zhu Zhong-Qi, Zhang Jin. Effects of S doping on electronic structures and photocatalytic properties of anatase TiO2. Acta Physica Sinica, 2008, 57(6): 3760-3768. doi: 10.7498/aps.57.3760
    [20] JIN SHI-RONG, LI AI-ZHEN, CHU JUN-HAO, CHEN SHI-WEI. TRANSIENT DECAY OF PHOTOEXCITED CARRIERS AND PHOTOLUMINESCENCE EFFICIENCY IN QUANTUM WELLS. Acta Physica Sinica, 1997, 46(5): 1001-1010. doi: 10.7498/aps.46.1001
Metrics
  • Abstract views:  15112
  • PDF Downloads:  6174
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2014
  • Accepted Date:  04 March 2015
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map