-
本实验以氯化铜 (CuCl2·2H2O) 和二硫化碳(CS2)为原料, 以乙二醇(C2H6O2) 为溶剂, 通过溶剂热法成功制备了具有可见光活性的花状硫化铜(CuS) 级次纳米结构. 并利用X射线粉末衍射技术(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM) 等技术对其进行了表征, 利用紫外可见吸收光谱(Uv-vis)分析了其光学性能, 并以甲基橙为目标降解物对其可见光催化活性进行了研究. 结果表明: 花状CuS级次纳米结构具有很高的可见光催化活性, 与体相CuS粉末相比有很大的提高, 在自然光照射下对甲基橙的降解率可以达到100%. 同时本文对花状级次纳米结构的形成机理进行了分析.Flower-like copper monosulfide (CuS) hierarchical nanostructures composed of nanoplates were successfully synthesized by means of a simple solvothermal process, using CuCl2·2H2O as Cu-precursor, CS2 as S-source and ethylene glycol (C2H6O2) as the solvent. The morphology and structure of the product were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The optical properties of the copper monosulfide hierarchical nanostructures were investigated by UV-visible absorption spectra. In addition, the photocatalytic activity of the flower-like CuS hierarchical nanostructures were evaluated by the degradation of methyl orange solution under natural light. Results demonstrate that the as-prepared flower-like CuS hierarchical nanostructures possess high photocatalytic performance, the degradation rate is up to 100% after 90 min degradation under the irradiation of natural light, which is much higher than bulk CuS powder. The formation mechanism of flower-like CuS hierarchical nanostructures was preliminarily analysed, alss.
-
Keywords:
- CuS /
- solvothermal /
- hierarchical nanostructures /
- photocatalysis
[1] Fujishima A, Honda A 1972 Nature 238 37
[2] Schmidt C M, Buchbinder A M, Weitz E, Geiger F M 2007 J. Phys. Chem. A 111 13023
[3] Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese) [李冬冬, 王丽莉 2012 物理学 61 034212]
[4] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 57 3760]
[5] Zhang F, Wong S S 2009 Chem. Mater. 21 4541
[6] Muruganandham M, Kusumoto Y 2009 J. Phys. Chem. C 113 16144
[7] Gorai S, Ganguli D, Chaudhuri S 2005 Cryst. Growth Des. 5 875
[8] Yuan K D, Wu J J, Liu M L, Chen L D, Huang F Q 2008 Appl. Phys. Lett. 93 132106
[9] Li F, Bi W T, Kong T, Qin Q H 2009 Cryst. Res. Technol. 44 729
[10] Chung J S, Sohll L J 2002 J. Power Sources 108 226
[11] Sakamoto T, Sunamura H, Kawaura H, Hasegawa H, Nakayama T, Aono M 2003 Appl. Phys. Lett. 82 3032
[12] Lee H, Yoon S W, Kim E J, Park J 2007 Nano Lett. 7 778
[13] Roy P, Srivastava S K 2007 Mater. Lett. 61 1693
[14] Mao G, Dong W, Kurth D G 2004 Nano Lett. 4 249
[15] Liao X H, Chena N Y, Xub S, Yanga S B, Zhu J J 2003 Cryst. Growth Des. 252 593
[16] Roy P, Srivastava S K 2006 Cryst. Growth Des. 6 1921
[17] Jiang X C, Xie Y, Lu J, He W, Zhu L Y, Qian Y T 2000 J. Mater. Chem. 10 2193
[18] Yangnd Y J, Xiang J W 2005 Appl. Phys. A 7 1351
[19] Lu Q Y, Gao F, Zhao D Y 2002 Nano Lett. 2 725
[20] Gonçalves A P, Lopes E B, Casaca A, Dias M, Almeida M 2008 J Cryst. Growth 310 2742
[21] Ewers T D, Sra A K, Norris B C, Cable R C, Cheng C H, Shantz D F, Schaak R E 2005 Chem. Mater. 17 514
[22] Jiang D, Hu W, Wang H, Shen B, Deng Y 2012 J. Mater. Sci. 47 4972
[23] Shen X P, Zhao H, Shu H Q, Zhou H, Yuan A H 2009 J. Phys. Chem. Solids 70 422
[24] Gao P X, Ding Y, Mai W, Hughes W L, Lao C S, Wang Z L 2005 Science 309 1700
[25] Haram S K, Mahadeshwar A R, Dixit S G 1996 J. Phys. Chem. 100 5868
[26] Chen L Y, Zhang Z D, Wang W Z 2008 J. Phys. Chem. C 112 4117
[27] Yu X L, Cao C B 2007 Adv. Funct. Mater. 17 1397
[28] Basu M, Sinha A K, Pradhan M, Sarkar S, Negishi Y, Govind Pal T 2010 Environ. Sci. Technol. 44 6313
[29] Li F, Wu J F, Qin Q H, Li Z, Huang X T 2009 Powder Technol. 198 267
[30] Hoffman M R, Marttin S T, Choi W, Bahnemann D W 1995 Chem. Rev. 95 69
-
[1] Fujishima A, Honda A 1972 Nature 238 37
[2] Schmidt C M, Buchbinder A M, Weitz E, Geiger F M 2007 J. Phys. Chem. A 111 13023
[3] Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese) [李冬冬, 王丽莉 2012 物理学 61 034212]
[4] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 57 3760]
[5] Zhang F, Wong S S 2009 Chem. Mater. 21 4541
[6] Muruganandham M, Kusumoto Y 2009 J. Phys. Chem. C 113 16144
[7] Gorai S, Ganguli D, Chaudhuri S 2005 Cryst. Growth Des. 5 875
[8] Yuan K D, Wu J J, Liu M L, Chen L D, Huang F Q 2008 Appl. Phys. Lett. 93 132106
[9] Li F, Bi W T, Kong T, Qin Q H 2009 Cryst. Res. Technol. 44 729
[10] Chung J S, Sohll L J 2002 J. Power Sources 108 226
[11] Sakamoto T, Sunamura H, Kawaura H, Hasegawa H, Nakayama T, Aono M 2003 Appl. Phys. Lett. 82 3032
[12] Lee H, Yoon S W, Kim E J, Park J 2007 Nano Lett. 7 778
[13] Roy P, Srivastava S K 2007 Mater. Lett. 61 1693
[14] Mao G, Dong W, Kurth D G 2004 Nano Lett. 4 249
[15] Liao X H, Chena N Y, Xub S, Yanga S B, Zhu J J 2003 Cryst. Growth Des. 252 593
[16] Roy P, Srivastava S K 2006 Cryst. Growth Des. 6 1921
[17] Jiang X C, Xie Y, Lu J, He W, Zhu L Y, Qian Y T 2000 J. Mater. Chem. 10 2193
[18] Yangnd Y J, Xiang J W 2005 Appl. Phys. A 7 1351
[19] Lu Q Y, Gao F, Zhao D Y 2002 Nano Lett. 2 725
[20] Gonçalves A P, Lopes E B, Casaca A, Dias M, Almeida M 2008 J Cryst. Growth 310 2742
[21] Ewers T D, Sra A K, Norris B C, Cable R C, Cheng C H, Shantz D F, Schaak R E 2005 Chem. Mater. 17 514
[22] Jiang D, Hu W, Wang H, Shen B, Deng Y 2012 J. Mater. Sci. 47 4972
[23] Shen X P, Zhao H, Shu H Q, Zhou H, Yuan A H 2009 J. Phys. Chem. Solids 70 422
[24] Gao P X, Ding Y, Mai W, Hughes W L, Lao C S, Wang Z L 2005 Science 309 1700
[25] Haram S K, Mahadeshwar A R, Dixit S G 1996 J. Phys. Chem. 100 5868
[26] Chen L Y, Zhang Z D, Wang W Z 2008 J. Phys. Chem. C 112 4117
[27] Yu X L, Cao C B 2007 Adv. Funct. Mater. 17 1397
[28] Basu M, Sinha A K, Pradhan M, Sarkar S, Negishi Y, Govind Pal T 2010 Environ. Sci. Technol. 44 6313
[29] Li F, Wu J F, Qin Q H, Li Z, Huang X T 2009 Powder Technol. 198 267
[30] Hoffman M R, Marttin S T, Choi W, Bahnemann D W 1995 Chem. Rev. 95 69
计量
- 文章访问数: 7150
- PDF下载量: 979
- 被引次数: 0