Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation and prediction of the weld-line in the filling process using a corrected smoothed particle hydrodynamics method

Ren Jin-Lian Lu Wei-Gang Jiang Tao

Citation:

Simulation and prediction of the weld-line in the filling process using a corrected smoothed particle hydrodynamics method

Ren Jin-Lian, Lu Wei-Gang, Jiang Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A corrected smoothed particle hydrodynamics (SPH) method for viscoelastic fluid is proposed and used to tentatively simulate and predict the behavior of the molecule near the weld line in the filling process of the FENE-P fluid in this paper. And the corrected SPH scheme for the viscoelastic fluid is simultaneously presented. Firstly, a coupled macro-micro model based on the SPH method for the viscoelatic fluid is set up. Then, some benchmarks, such as the flow behavior of the periodic cylinders of FENE-P fluid and the non-isothermal Poiseuille flow based on the Oldroyd-B model which is a simplified model of FENE-P model, are simulated to verify their validity and the convergence of the corrected SPH method of solving the coupled macro-micro problem of the polymer and the discrete SPH temperature model for viscoelastic fluid. Finally, the filling process of the viscoelastic fluid based on the FENE-P model in a ring-shaped mold is simulated, and the behavior of the micro molecules in the filling process is tentatively shown by orientation ellipse. Meanwhile the non-isothermal filling process of the FENE-P fluid is also implemented. The numerical results show clearly the behavior of the molecules in the filling process of the FENE-P fluid, the weld line is indeed observed in the filling process of the FENE-P fluid in the ring-shaped mold, and the non-isothermal filling process can improve the weld line to some extent. In order to further discuss the improvement of the weld line, the filling processes of different cases are simulated in the multiple-gating C-shaped mold by using the pattern of the hot runner and valve gates, and the obtained results are compared with other available data. Moreover, the effect of the delay time needed for the fluid to be injected on the flow is also investigated. The numerical results show that the pattern of the hot runner and valve gates can improve and even remove the weld-line in the filling process of the polymer melt, especially for the big-sized product, and the shorter the delay time is, the faster the flow is, and the bigger the appearance probability of the weld line is.
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130436) and the Postdoctoral Science Foundation of China (Grant No. 2014M550310)
    [1]

    Xiao C J, Liu C T, Shen C Y 2003 Eng. Plast. Appl. 3 17 (in Chinese) [肖长江, 刘春太, 申长雨 2003 工程塑料应用 3 17]

    [2]

    Dong L 2007 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [董林 2007 博士研究生学位论文 (长春: 吉林大学)]

    [3]

    Tomé M F, Duffy B, McKee S 1996 J. Non-Newton. Fluid Mech. 62 9

    [4]

    John D, Anderson J R 2002 Computational Fluid Dynamics: the Basics with Applications (Beijing: Tsinghua University Press)

    [5]

    Yang B X, Ouyang J 2012 Acta Phys. Sin. 61 234602 (in Chinese) [杨斌鑫, 欧阳洁 2012 61 234602]

    [6]

    Fu D X, Ma Y W 2002 Computational Fluid Mechanics (Beijing: Higher Education Press) (in Chinese) [傅德薰, 马延文 2002 计算流体力学 (北京: 高等教育出版社)]

    [7]

    Li Q 2012 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [李强 2012 博士研究生学位论文 (西安: 西北工业大学)]

    [8]

    Chen R J, Ge H X 2010 Chin. Phys. B 19 090201

    [9]

    Gingold R A, Monaghan J J 1977 Mon. Not. Roy. Astron. Soc. 181 375

    [10]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 61 054701]

    [11]

    Fan X J., Tanner R I, Zheng R 2010 J. Non-Newton. Fluid Mech. 165 219

    [12]

    Han X, Yang G, Long X Y 2007 J. Hunan Univ. 34 28 (in Chinese) [韩旭, 杨刚, 龙述尧 2007 湖南大学学报 34 28]

    [13]

    Batra R C, Zhang G M 2007 Comput. Mech. 40 531

    [14]

    Liu M B, Xie W P, Liu G R 2005 Appl. Math. Model. 29 1252

    [15]

    Ren J L, Ouyang J, Jiang T 2012 Comput. Mech. 49 643

    [16]

    Jiang T, Ren J L, Xu L, Lu L G 2014 Acta Phys. Sin. 63 210203 (in Chinese) [蒋涛, 任金莲, 徐磊, 陆林广 2014 63 210203]

    [17]

    Ruan C L 2011 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [阮春蕾 2011 博士研究生学位论文 (西安: 西北工业大学)]

    [18]

    Colagrossi A, Landrini M 2003 J. Comput. Phys. 191 448

    [19]

    Cleary P W 2010 Appl. Math. Model. 34 3189

    [20]

    Han X H 2007 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [韩先洪 2007 博士学位论文 (大连: 大连理工大学)]

    [21]

    Monaghan J J, Kajtar J B 2009 Comput. Phys. Commun. 180 1811

    [22]

    Liu A W, Bornside D E, Amstrong R C, Brown R A 1998 J. Non-Newton. Fluid Mech. 77 153

    [23]

    Ahsan A 2011 Evaporation, Condensation and Heat Transfer (Croatia: InTech)

    [24]

    Liu Y 2009 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese) [刘毅2009 博士研究生学位论文 (广州: 华南理工大学)]

  • [1]

    Xiao C J, Liu C T, Shen C Y 2003 Eng. Plast. Appl. 3 17 (in Chinese) [肖长江, 刘春太, 申长雨 2003 工程塑料应用 3 17]

    [2]

    Dong L 2007 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [董林 2007 博士研究生学位论文 (长春: 吉林大学)]

    [3]

    Tomé M F, Duffy B, McKee S 1996 J. Non-Newton. Fluid Mech. 62 9

    [4]

    John D, Anderson J R 2002 Computational Fluid Dynamics: the Basics with Applications (Beijing: Tsinghua University Press)

    [5]

    Yang B X, Ouyang J 2012 Acta Phys. Sin. 61 234602 (in Chinese) [杨斌鑫, 欧阳洁 2012 61 234602]

    [6]

    Fu D X, Ma Y W 2002 Computational Fluid Mechanics (Beijing: Higher Education Press) (in Chinese) [傅德薰, 马延文 2002 计算流体力学 (北京: 高等教育出版社)]

    [7]

    Li Q 2012 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [李强 2012 博士研究生学位论文 (西安: 西北工业大学)]

    [8]

    Chen R J, Ge H X 2010 Chin. Phys. B 19 090201

    [9]

    Gingold R A, Monaghan J J 1977 Mon. Not. Roy. Astron. Soc. 181 375

    [10]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 61 054701]

    [11]

    Fan X J., Tanner R I, Zheng R 2010 J. Non-Newton. Fluid Mech. 165 219

    [12]

    Han X, Yang G, Long X Y 2007 J. Hunan Univ. 34 28 (in Chinese) [韩旭, 杨刚, 龙述尧 2007 湖南大学学报 34 28]

    [13]

    Batra R C, Zhang G M 2007 Comput. Mech. 40 531

    [14]

    Liu M B, Xie W P, Liu G R 2005 Appl. Math. Model. 29 1252

    [15]

    Ren J L, Ouyang J, Jiang T 2012 Comput. Mech. 49 643

    [16]

    Jiang T, Ren J L, Xu L, Lu L G 2014 Acta Phys. Sin. 63 210203 (in Chinese) [蒋涛, 任金莲, 徐磊, 陆林广 2014 63 210203]

    [17]

    Ruan C L 2011 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [阮春蕾 2011 博士研究生学位论文 (西安: 西北工业大学)]

    [18]

    Colagrossi A, Landrini M 2003 J. Comput. Phys. 191 448

    [19]

    Cleary P W 2010 Appl. Math. Model. 34 3189

    [20]

    Han X H 2007 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [韩先洪 2007 博士学位论文 (大连: 大连理工大学)]

    [21]

    Monaghan J J, Kajtar J B 2009 Comput. Phys. Commun. 180 1811

    [22]

    Liu A W, Bornside D E, Amstrong R C, Brown R A 1998 J. Non-Newton. Fluid Mech. 77 153

    [23]

    Ahsan A 2011 Evaporation, Condensation and Heat Transfer (Croatia: InTech)

    [24]

    Liu Y 2009 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese) [刘毅2009 博士研究生学位论文 (广州: 华南理工大学)]

  • [1] Xu Xiao-Yang, Zhou Ya-Li, Yu Peng. Improved smoothed particle dynamics simulation of eXtended Pom-Pom viscoelastic fluid. Acta Physica Sinica, 2023, 72(3): 034701. doi: 10.7498/aps.72.20221922
    [2] Zhang Tao-Ran, Mo Run-Yang, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong. Dynamic analysis of bubble in liquid cavity wrapped by viscoelastic medium. Acta Physica Sinica, 2021, 70(12): 124301. doi: 10.7498/aps.70.20201876
    [3] Zhang Xiao-Ling, Si Le-Fei, Meng Qing-Duan, Lü Yan-Qiu, Si Jun-Jie. Structural model of InSb IRFPAs including underfill curing process. Acta Physica Sinica, 2017, 66(1): 016102. doi: 10.7498/aps.66.016102
    [4] Li Qiang, Shao Shui-Jun, Li Shi-Shun. Numerical simulation of molecular conformation evolution during mold filling process in a complex cavity. Acta Physica Sinica, 2016, 65(24): 244601. doi: 10.7498/aps.65.244601
    [5] Jiang Tao, Lu Wei-Gang, Ren Jin-Lian, Xu Lei, Lu Lin-Guang. Simulation of polymer filling process by an improved smoothed particle hydrodynamics method based on higher-order Taylor expansion. Acta Physica Sinica, 2016, 65(22): 220202. doi: 10.7498/aps.65.220202
    [6] Liu Hu, Qiang Hong-Fu, Chen Fu-Zhen, Han Ya-Wei, Fan Shu-Jia. A new boundary treatment method in smoothed particle hydrodynamics. Acta Physica Sinica, 2015, 64(9): 094701. doi: 10.7498/aps.64.094701
    [7] Ma Li-Qiang, Su Tie-Xiong, Liu Han-Tao, Meng-Qing. Numerical simulation on oscillation of micro-drops by means of smoothed particle hydrodynamics. Acta Physica Sinica, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [8] Lei Juan-Mian, Huang Can. An improved pre-processing method for somooth particle hydrodynamics. Acta Physica Sinica, 2014, 63(14): 144702. doi: 10.7498/aps.63.144702
    [9] Wang Fang, Li Jun-Lin, Yang Bin-Xin. Simulation of solidification with phase-change in viscoelastic moldfilling process. Acta Physica Sinica, 2014, 63(8): 084601. doi: 10.7498/aps.63.084601
    [10] Su Tie-Xiong, Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong. A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [11] Jiang Tao, Lu Lin-Guang, Lu Wei-Gang. Numerical study of collision process between two equal diameter liquid micro-droplets using a modified smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [12] Qiu Liu-Chao. Numerical simulation of deformation process of viscous liquid drop based on the incompressible smoothed particle hydrodynamics. Acta Physica Sinica, 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [13] Han Ya-Wei, Qiang Hong-Fu, Zhao Jiu-Ling, Gao Wei-Ran. A new repulsive model for solid boundary condition in smoothed particle hydrodynamics. Acta Physica Sinica, 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [14] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [15] Yang Bin-Xin, Ouyang Jie. Simulation of residual stress in viscoelastic mold filling process. Acta Physica Sinica, 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [16] Zuo Xue-Yun, Li Zhong-Qiu, Wang Wei, Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Nanowelding of contact between carbon nanotubesand gold electrodes. Acta Physica Sinica, 2011, 60(6): 066103. doi: 10.7498/aps.60.066103
    [17] Jiang Tao, Ouyang Jie, Zhao Xiao-Kai, Ren Jin-Lian. The deformation process of viscous liquid drop studied by using kernel gradient corrected SPH method. Acta Physica Sinica, 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [18] Liu Mou-Bin, Chang Jian-Zhong. Particle distribution and numerical stability in smoothed particle hydrodynamics method. Acta Physica Sinica, 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
    [19] Chen Bo, Tong Pei-Qing. Dynamics of many particles in the urn model. Acta Physica Sinica, 2005, 54(12): 5554-5558. doi: 10.7498/aps.54.5554
    [20] CHEN CHENG, SUN WEI. A SELF-CONSISTENT KINETICS MODEL OF CuBr LASER WITH HYDROGEN ADDITIVES. Acta Physica Sinica, 1995, 44(11): 1734-1746. doi: 10.7498/aps.44.1734
Metrics
  • Abstract views:  6383
  • PDF Downloads:  334
  • Cited By: 0
Publishing process
  • Received Date:  12 October 2014
  • Accepted Date:  16 November 2014
  • Published Online:  05 April 2015

/

返回文章
返回
Baidu
map