Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A molecular dynamics study of temperature and depth effect on helium bubble released from Ti surface

Liang Li Tan Xiao-Hua Xiang Wei Wang Yuan Cheng Yan-Lin Ma Ming-Wang

Citation:

A molecular dynamics study of temperature and depth effect on helium bubble released from Ti surface

Liang Li, Tan Xiao-Hua, Xiang Wei, Wang Yuan, Cheng Yan-Lin, Ma Ming-Wang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using molecular dynamics simulation, the effects of temperature and depth of helium bubble on volume, pressure and releasing process of helium bubble in metal Ti are investigated. First, through studying the states of helium bubble at different depths at room temperature, the variation regularities of volume, pressure and releasing process of helium bubble with its depth are acquired. The results show that with depth augmenting, the pressure of helium bubble increases gradually, while the volume decreases, but these two parameters are kept at some level when the depth is greater than 2.6 nm. Then, the evolutions of model system with helium bubble at various temperatures are simulated. The critical temperatures of helium bubble released from Ti surface at different depths are greatly different. On the whole, the critical temperature is in direct proportion to depth. But the releasing rates at different temperatures are almost unanimous. Finally, the mechanism of helium bubble released from Ti surface is explained on the basis of statistics and analyses of pressure of helium bubble and tensile strength of the metal thin film above the bubble. It is found that helium bubble would tear the Ti film above it when the pressure in helium bubble is greater than the strength of Ti film, and then helium atoms will be released from the metal.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51406187), the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2014B0401060), and the Technology Innovation Foundation of Institute of Electronic Engineering, China Academy of Engineering Physics (Grant No. S20140805).
    [1]

    Rajainmaki H, Linderoth S, Hansen H E, Nieminen R M, Bentzon M D 1988 Phys. Rev. B 38 1087

    [2]

    Singh A, Maji S, Nambissan P M G 2001 J. Phys.: Condens. Matter 13 177

    [3]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229

    [4]

    Iwakiri H, Yasunaga K, Morishita K, Yoshida N 2000 J. Nucl. Mater. 283-287 1134

    [5]

    Ehrlich K, Bloom E E, Kondo T 2000 J. Nucl. Mater. 283-287 79

    [6]

    Kawano S, Sumiya R, Fukuya K 1998 J. Nucl. Mater. 258-263 2008

    [7]

    Wang P X, Song J S 2002 Helium in Materials and the Permeation of Tritium (Beijing: National Defense Industry Press) pp1, 2 (in Chinese) [王佩璇, 宋家树 2002 材料中氦及氚渗透(北京: 国防工业出版社)第1, 2 页]

    [8]

    Li N, Fu E G, Wang H, Carter J J, Shao L, Maloy S A, Misra A, Zhang X 2009 J. Nucl. Mater. 389 233

    [9]

    Lindau R, Moslang A, Preininger D, Rieth M, Rohrigb H D 1999 J. Nucl. Mater. 271-272 450

    [10]

    Birtcher R C, Donnelly S E, Templier C 1994 Phys. Rev. B 50 764

    [11]

    Galindo R E, Veen A V, Evans J H, Schut H, Hosson J T M D 2004 Nucl. Instrum. Meth. Phys. Res. B 217 262

    [12]

    Cipiti B B, Kulcinski G L 2005 J. Nucl. Mater. 347 298

    [13]

    Li Y, Deng A H, Zhou Y L, Zhou B, Wang K, Hou Q, Shi L Q, Qin X B, Wang B Y 2012 Chin. Phys. Lett. 29 047801

    [14]

    Liu W, Wu Q Q, Chen S L, Zhu J J, An Z, Wang Y 2012 Acta Phys. Sin. 61 176802 (in Chinese) [刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊 2012 61 176802]

    [15]

    Wang L, Hu W Y, Xiao S F, Yang J Y, Deng H Q 2011 J. Mater. Res. 26 416

    [16]

    Zhang B L, Wang J, Li M, Hou Q 2013 J. Nucl. Mater. 438 178

    [17]

    Zhang B L, Wang J, Hou Q 2011 Chin. Phys. B 20 036105

    [18]

    Wang J, Zhang B L, Zhou Y L, Hou Q 2011 Acta Phys. Sin. 60 106601 (in Chinese) [汪俊, 张宝玲, 周宇璐, 侯氢 2011 60 106601]

    [19]

    San-Martin A, Manchester F D 1987 Bull. Alloy Phase Diagr. 8 30

    [20]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [21]

    Wang J, Hou Q, Wu Z C, Long X G, Wu X C, Luo S Z 2006 Chin. Phys. Lett. 23 1666

    [22]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926

    [23]

    Snow C S, Brewer L N, Gelles D S, Rodriguez M A 2008 J. Nucl. Mater. 374 147

    [24]

    Allenand M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon) pp56-60

  • [1]

    Rajainmaki H, Linderoth S, Hansen H E, Nieminen R M, Bentzon M D 1988 Phys. Rev. B 38 1087

    [2]

    Singh A, Maji S, Nambissan P M G 2001 J. Phys.: Condens. Matter 13 177

    [3]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229

    [4]

    Iwakiri H, Yasunaga K, Morishita K, Yoshida N 2000 J. Nucl. Mater. 283-287 1134

    [5]

    Ehrlich K, Bloom E E, Kondo T 2000 J. Nucl. Mater. 283-287 79

    [6]

    Kawano S, Sumiya R, Fukuya K 1998 J. Nucl. Mater. 258-263 2008

    [7]

    Wang P X, Song J S 2002 Helium in Materials and the Permeation of Tritium (Beijing: National Defense Industry Press) pp1, 2 (in Chinese) [王佩璇, 宋家树 2002 材料中氦及氚渗透(北京: 国防工业出版社)第1, 2 页]

    [8]

    Li N, Fu E G, Wang H, Carter J J, Shao L, Maloy S A, Misra A, Zhang X 2009 J. Nucl. Mater. 389 233

    [9]

    Lindau R, Moslang A, Preininger D, Rieth M, Rohrigb H D 1999 J. Nucl. Mater. 271-272 450

    [10]

    Birtcher R C, Donnelly S E, Templier C 1994 Phys. Rev. B 50 764

    [11]

    Galindo R E, Veen A V, Evans J H, Schut H, Hosson J T M D 2004 Nucl. Instrum. Meth. Phys. Res. B 217 262

    [12]

    Cipiti B B, Kulcinski G L 2005 J. Nucl. Mater. 347 298

    [13]

    Li Y, Deng A H, Zhou Y L, Zhou B, Wang K, Hou Q, Shi L Q, Qin X B, Wang B Y 2012 Chin. Phys. Lett. 29 047801

    [14]

    Liu W, Wu Q Q, Chen S L, Zhu J J, An Z, Wang Y 2012 Acta Phys. Sin. 61 176802 (in Chinese) [刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊 2012 61 176802]

    [15]

    Wang L, Hu W Y, Xiao S F, Yang J Y, Deng H Q 2011 J. Mater. Res. 26 416

    [16]

    Zhang B L, Wang J, Li M, Hou Q 2013 J. Nucl. Mater. 438 178

    [17]

    Zhang B L, Wang J, Hou Q 2011 Chin. Phys. B 20 036105

    [18]

    Wang J, Zhang B L, Zhou Y L, Hou Q 2011 Acta Phys. Sin. 60 106601 (in Chinese) [汪俊, 张宝玲, 周宇璐, 侯氢 2011 60 106601]

    [19]

    San-Martin A, Manchester F D 1987 Bull. Alloy Phase Diagr. 8 30

    [20]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [21]

    Wang J, Hou Q, Wu Z C, Long X G, Wu X C, Luo S Z 2006 Chin. Phys. Lett. 23 1666

    [22]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926

    [23]

    Snow C S, Brewer L N, Gelles D S, Rodriguez M A 2008 J. Nucl. Mater. 374 147

    [24]

    Allenand M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon) pp56-60

  • [1] Yang Quan, Ma Li, Geng Song-Chao, Lin Yi-Ni, Chen Tao, Sun Li-Ning. Molecular dynamics simulation of contact behaviors between multiwall carbon nanotube and metal surface. Acta Physica Sinica, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [2] Li Xiang, Yin Yi-Hui, Zhang Yuan-Zhang. Molecular dynamics simulation of helium bubble ultimate pressure in α-Fe. Acta Physica Sinica, 2021, 70(7): 076101. doi: 10.7498/aps.70.20201409
    [3] Zhou Liang-Fu, Zhang Jing, He Wen-Hao, Wang Dong, Su Xue, Yang Dong-Yang, Li Yu-Hong. The nucleation and growth of Helium hubbles at grain boundaries of bcc tungsten: a molecular dynamics simulation. Acta Physica Sinica, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [4] Liu Si-Mian, Han Wei-Zhong. Mechanism of interaction between interface and radiation defects in metal. Acta Physica Sinica, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [5] Zhang Bao-Ling, Song Xiao-Yong, Hou Qing, Wang Jun. Molecular dynamics study on the phase transition of high density helium. Acta Physica Sinica, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [6] Zou Da-Ren, Jin Shuo, Xu Ke, Zhao Zhen-Hua, Cheng Long, Yuan Yue. Simulation of the experiments on thermal desorption spectroscopy of hydrogen isotope in tungsten with the framework of rate theory. Acta Physica Sinica, 2015, 64(7): 072801. doi: 10.7498/aps.64.072801
    [7] Chen Min. Molecular dynamics study of small helium cluster diffusion in titanium. Acta Physica Sinica, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [8] Zhang Yong, Zhang Chong-Hong, Zhou Li-Hong, Li Bing-Sheng, Yang Yi-Tao. Study on nanohardness of helium-implanted 4H-SiC. Acta Physica Sinica, 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [9] Ma Wen, Zhu Wen-Jun, Zhang Ya-Lin, Chen Kai-Guo, Deng Xiao-Liang, Jing Fu-Qian. Construction of metallic nanocrystalline samples by molecular dynamics simulation. Acta Physica Sinica, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [10] Chen Kai-Guo, Zhu Wen-Jun, Ma Wen, Deng Xiao-Liang, He Hong-Liang, Jing Fu-Qian. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [11] Chen Min, Hou Qing. Influence of defects on the coalescence of helium in titanium: An atomistic simulation. Acta Physica Sinica, 2010, 59(2): 1185-1189. doi: 10.7498/aps.59.1185
    [12] He An-Min, Qin Cheng-Sen, Shao Jian-Li, Wang Pei. Molecular dynamics simulation of the anisotropy of surface melting of metal Al. Acta Physica Sinica, 2009, 58(4): 2667-2674. doi: 10.7498/aps.58.2667
    [13] Chen Min, Wang Jun, Hou Qing. Influence of helium on volume change and stability of titanium structure: An atomistic simulation. Acta Physica Sinica, 2009, 58(2): 1149-1153. doi: 10.7498/aps.58.1149
    [14] Wang Hai-Yan, Zhu Wen-Jun, Deng Xiao-Liang, Song Zhen-Fei, Chen Xiang-Rong. Plastic deformation of helium bubble and void in aluminum under shock loading. Acta Physica Sinica, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [15] Wang Hai-Yan, Zhu Wen-Jun, Song Zhen-Fei, Liu Shao-Jun, Chen Xiang-Rong, He Hong-Liang. The influence of helium bubble on the elastic properties of aluminum. Acta Physica Sinica, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [16] Zhou Guo-Rong, Gao Qiu-Ming. Freezing of Ni nanowires investigated by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [17] Zhou Zong-Rong, Wang Yu, Xia Yuan-Ming. Molecular dynamics study of deformation mechanism of γ-TiAl intermetallics. Acta Physica Sinica, 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [18] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] Chen Jun, Jing Fu-Qian, Zhang Jing-Lin, Chen Dong-Quan. . Acta Physica Sinica, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  6756
  • PDF Downloads:  363
  • Cited By: 0
Publishing process
  • Received Date:  24 June 2014
  • Accepted Date:  22 September 2014
  • Published Online:  05 February 2015

/

返回文章
返回
Baidu
map