-
In the absence of external force and noise, a deterministic transport model for asymmetrically coupled nonlinear oscillators in a ratchet potential is established. By numerical simulation, both directed current and reversely directed current can be obtained by selecting appropriate parameters. The complex dependences of current velocity on the model parameters are discussed. It is observed that the average velocity of the particle chain varies non-monotonically with coupling strength and potential height, indicating a generalized resonance phenomenon. When the other parameters are fixed, the speed curve which is dependent on spring free length has a roughly inverse symmetry, and there also exists a generalized multi-peak resonance.
-
Keywords:
- asymmetrically coupled /
- ratchet potential /
- deterministic directional transport /
- generalized resonance
[1] Fendrik A J, Romanelli L, Reale M V 2012 Phys. Rev. E 85 041149
[2] Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701
[3] Zhao A K, Zhang H W, Liu Y X 2010 Chin. Phys. B 19 110506
[4] Lai L, Zhou X X, Ma H, Luo M K 2013 Acta Phys. Sin. 62 150502 (in Chinese) [赖莉, 周薛雪, 马洪, 罗懋康 2013 62 150502]
[5] Zheng Z G 2004 Spantiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing:Higher Education Press) p279, 292 (in Chinese) [郑志刚 2004 耦合非线性系统的时空动力学与合作行为 (北京:高等教育出版社) 第279, 292页]
[6] Chen H B, Zheng Z G 2012 J. Univ.Shanghai for Science and Technology 34 6 (in Chinese) [陈宏斌, 郑志刚 2012 上海理工大学学报 34 6]
[7] Tu Z, Lai L, Luo M K 2014 Acta Phys. Sin. 63 120503 (in Chinese) [屠浙, 赖莉, 罗懋康 2014 63 120503]
[8] Guérin T, Prost J, Martin P 2010 Current Opinnion in Cell Biology 22 14
[9] Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 62 040501]
[10] Savel E S, Marchesoni F, Nori F 2003 Phys. Rev. Lett. 91 10601
[11] Veigel C, Schmidt C F 2011 Nat. Rev. Mol. Cel. Biol. 12 163
[12] Lipowsky R, Klumpp S, Nieuwenhuizen T M 2001 Phys. Rev. Lett. 87 108101
[13] Roostalu J, Hetrich C, Bieling P, Telley I A, Schiebel E, Surrey T 2011 Science 332 94
[14] Downton M T, Zuckermann M J, Craig E M, Plischke M, Linke H 2006 Phys. Rev. E 73 011909
[15] Beeg J, Klumpp S, Dimova R, Gracia R S, Unger E, Lipowsky R 2008 Biophys. J. 94 532
-
[1] Fendrik A J, Romanelli L, Reale M V 2012 Phys. Rev. E 85 041149
[2] Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701
[3] Zhao A K, Zhang H W, Liu Y X 2010 Chin. Phys. B 19 110506
[4] Lai L, Zhou X X, Ma H, Luo M K 2013 Acta Phys. Sin. 62 150502 (in Chinese) [赖莉, 周薛雪, 马洪, 罗懋康 2013 62 150502]
[5] Zheng Z G 2004 Spantiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing:Higher Education Press) p279, 292 (in Chinese) [郑志刚 2004 耦合非线性系统的时空动力学与合作行为 (北京:高等教育出版社) 第279, 292页]
[6] Chen H B, Zheng Z G 2012 J. Univ.Shanghai for Science and Technology 34 6 (in Chinese) [陈宏斌, 郑志刚 2012 上海理工大学学报 34 6]
[7] Tu Z, Lai L, Luo M K 2014 Acta Phys. Sin. 63 120503 (in Chinese) [屠浙, 赖莉, 罗懋康 2014 63 120503]
[8] Guérin T, Prost J, Martin P 2010 Current Opinnion in Cell Biology 22 14
[9] Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 62 040501]
[10] Savel E S, Marchesoni F, Nori F 2003 Phys. Rev. Lett. 91 10601
[11] Veigel C, Schmidt C F 2011 Nat. Rev. Mol. Cel. Biol. 12 163
[12] Lipowsky R, Klumpp S, Nieuwenhuizen T M 2001 Phys. Rev. Lett. 87 108101
[13] Roostalu J, Hetrich C, Bieling P, Telley I A, Schiebel E, Surrey T 2011 Science 332 94
[14] Downton M T, Zuckermann M J, Craig E M, Plischke M, Linke H 2006 Phys. Rev. E 73 011909
[15] Beeg J, Klumpp S, Dimova R, Gracia R S, Unger E, Lipowsky R 2008 Biophys. J. 94 532
Catalog
Metrics
- Abstract views: 6455
- PDF Downloads: 286
- Cited By: 0