-
The influences of medium and temperature on the shear thickening behavior of silica colloids are investigated. The nano fumed silica colloids in four media (ethylene glycol, polyethylene glycol 400, propylene glycol, and polypropylene glycol 400) exhibit continuous or discontinuous shear thickening behaviors. With the increase of temperature, the medium viscosity decreases, thus the apparent viscosity of colloids decreases. The relationship between the critical viscosity of shear thickening and temperature is well described by the Arrhenius equation. The ratio of viscosity of colloids to medium visocosity is used to scale the steady-shear rheological curves of the colloids under various temperatures. In the shear thinning regime at low shear rate, the form of rheological curve is independent of medium viscosity but correlates with the chemical properties of dispersing medium. In the shear thickening regime at high shear rate, a higher medium viscosity results in stronger shear thickening behavior.
-
Keywords:
- silica colloid /
- shear thickening /
- dispersing medium /
- temperature effect
[1] Barnes H A, Hutton J F, Walters K 1989 An Introduction to Rheology (Amsterdam: Elsevier) pp115-130
[2] Brown E, Jaeger H M 2011 Science 333 1230
[3] Mewis J, Wagner N J 2012 Colloidal Suspension Rheology (New York: Cambridge University Press) pp252-274
[4] Hoffman R L 1972 J. Rheol. 16 155
[5] Barnes H A 1989 J. Rheol. 33 329
[6] Wagner N J, Brady J F 2009 Phys. Today 62 27
[7] Cheng X, Mccoy J H, Israelachvili J N, Cohen I 2011 Science 333 1276
[8] Lootens D, van Damme H, Hémar Y, Hébraud P 2005 Phys. Rev. Lett. 95 268302
[9] Maranzano B J, Wagner N J 2001 J. Chem. Phys. 114 10514
[10] Brady J F, Bossis G 1985 J. Fluid Mech. 155 105
[11] Seto R, Mari R, Morris J F, Denn M M 2013 Phys. Rev. Lett. 111 218301
[12] Brown E, Jaeger H M 2012 J. Rheol. 56 875
[13] Brown E, Jaeger H M 2014 Rep. Prog. Phys. 77 46602
[14] Sun Q C, Jin F, Wang G Q, Zhang G H 2010 Acta Phys. Sin. 59 30 (in Chinese) [孙其诚, 金峰, 王光谦, 张国华 2010 59 30]
[15] Lee Y S, Wetzel E D, Wagner N J 2003 J. Mater. Sci. 38 2825
[16] Petel O E, Ouellet S, Loiseau J, Marr B J, Frost D L, Higgins A J 2013 Appl. Phys. Lett. 102 064103
[17] Zhang X Z, Li W H, Gong X L 2008 Smart. Mater. Struct. 17 35027
[18] Iyer S S, Vedad-Ghavami R, Lee H, Liger M, Kavehpour H P, Candler R N 2013 Appl. Phys. Lett. 102 251902
[19] Ji S Y, Li P F, Chen X D 2012 Acta Phys. Sin. 61 184703 (in Chinese) [季顺迎, 李鹏飞, 陈晓东 2012 61 184703]
[20] Zhang X Z, Li W H, Gong X L 2008 Smart. Mater. Struct. 17 15051
[21] Shenoy S S, Wagner N J 2005 Rheol. Acta 44 360
[22] Raghavan S R, Walls H J, Khan S A 2000 Langmuir 16 7920
[23] Raghavan S R, Khan S A 1997 J. Colloid Interf. Sci. 185 57
[24] Goodwin J W, Hughes R W 2008 Rheology for Chemists: An Introduction (Cambridge: Royal Society of Chemistry) pp70-71
[25] Hoffman R L 1974 J. Colloid Interf. Sci. 46 491
[26] Boersma W H, Laven J, Stein H N 1990 Aiche J. 36 321
[27] Brown E, Jaeger H M 2009 Phys. Rev. Lett. 103 86001
[28] Tian Y, Zhang M L, Jiang J L, Pesika N, Zeng H B, Israelachvili J, Meng Y G, Wen S Z 2011 Phys. Rev. E 83 011401
[29] Negi A S, Osuji C O 2009 Rheol. Acta 48 871
[30] Brady J F 1996 Curr. Opin. Colloid In. 1 472
[31] Zhou Z, Hollingsworth J V, Hong S, Wei G, Shi Y, Lu X, Cheng H, Han C C 2014 Soft Matter 10 6286
-
[1] Barnes H A, Hutton J F, Walters K 1989 An Introduction to Rheology (Amsterdam: Elsevier) pp115-130
[2] Brown E, Jaeger H M 2011 Science 333 1230
[3] Mewis J, Wagner N J 2012 Colloidal Suspension Rheology (New York: Cambridge University Press) pp252-274
[4] Hoffman R L 1972 J. Rheol. 16 155
[5] Barnes H A 1989 J. Rheol. 33 329
[6] Wagner N J, Brady J F 2009 Phys. Today 62 27
[7] Cheng X, Mccoy J H, Israelachvili J N, Cohen I 2011 Science 333 1276
[8] Lootens D, van Damme H, Hémar Y, Hébraud P 2005 Phys. Rev. Lett. 95 268302
[9] Maranzano B J, Wagner N J 2001 J. Chem. Phys. 114 10514
[10] Brady J F, Bossis G 1985 J. Fluid Mech. 155 105
[11] Seto R, Mari R, Morris J F, Denn M M 2013 Phys. Rev. Lett. 111 218301
[12] Brown E, Jaeger H M 2012 J. Rheol. 56 875
[13] Brown E, Jaeger H M 2014 Rep. Prog. Phys. 77 46602
[14] Sun Q C, Jin F, Wang G Q, Zhang G H 2010 Acta Phys. Sin. 59 30 (in Chinese) [孙其诚, 金峰, 王光谦, 张国华 2010 59 30]
[15] Lee Y S, Wetzel E D, Wagner N J 2003 J. Mater. Sci. 38 2825
[16] Petel O E, Ouellet S, Loiseau J, Marr B J, Frost D L, Higgins A J 2013 Appl. Phys. Lett. 102 064103
[17] Zhang X Z, Li W H, Gong X L 2008 Smart. Mater. Struct. 17 35027
[18] Iyer S S, Vedad-Ghavami R, Lee H, Liger M, Kavehpour H P, Candler R N 2013 Appl. Phys. Lett. 102 251902
[19] Ji S Y, Li P F, Chen X D 2012 Acta Phys. Sin. 61 184703 (in Chinese) [季顺迎, 李鹏飞, 陈晓东 2012 61 184703]
[20] Zhang X Z, Li W H, Gong X L 2008 Smart. Mater. Struct. 17 15051
[21] Shenoy S S, Wagner N J 2005 Rheol. Acta 44 360
[22] Raghavan S R, Walls H J, Khan S A 2000 Langmuir 16 7920
[23] Raghavan S R, Khan S A 1997 J. Colloid Interf. Sci. 185 57
[24] Goodwin J W, Hughes R W 2008 Rheology for Chemists: An Introduction (Cambridge: Royal Society of Chemistry) pp70-71
[25] Hoffman R L 1974 J. Colloid Interf. Sci. 46 491
[26] Boersma W H, Laven J, Stein H N 1990 Aiche J. 36 321
[27] Brown E, Jaeger H M 2009 Phys. Rev. Lett. 103 86001
[28] Tian Y, Zhang M L, Jiang J L, Pesika N, Zeng H B, Israelachvili J, Meng Y G, Wen S Z 2011 Phys. Rev. E 83 011401
[29] Negi A S, Osuji C O 2009 Rheol. Acta 48 871
[30] Brady J F 1996 Curr. Opin. Colloid In. 1 472
[31] Zhou Z, Hollingsworth J V, Hong S, Wei G, Shi Y, Lu X, Cheng H, Han C C 2014 Soft Matter 10 6286
Catalog
Metrics
- Abstract views: 7575
- PDF Downloads: 375
- Cited By: 0