搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiAl中Ni空位对杂质C原子的多重俘获及温度效应的第一性原理研究

胡雪兰 罗阳 赵若汐 胡艳敏 张艳峰 宋庆功

引用本文:
Citation:

NiAl中Ni空位对杂质C原子的多重俘获及温度效应的第一性原理研究

胡雪兰, 罗阳, 赵若汐, 胡艳敏, 张艳峰, 宋庆功

First-principles studies of multiple trapped impurity C by Ni vacancy and temperature effects in NiAl intermetallics

Hu Xue-Lan, Luo Yang, Zhao Ruo-Xi, Hu Yan-Min, Song Qing-Gong,
PDF
导出引用
  • 本文应用基于密度泛函理论的第一原理方法,研究了NiAl金属间化合物中Ni空位对杂质C元素的多重俘获.研究结果表明:在Ni空位存在时,单个C原子最易于存在于空位中心附近的富Ni八面体间隙位置且与邻近的Ni原子和Al原子之间存在共价键形式的相互作用.多个C原子在NiAl中倾向于以Sequential的方式被Ni空位俘获,进而形成CnVNi(n=1,2,3,4)团簇.通过电荷密度和差分电荷密度分析得到,当Ni空位俘获多个C原子后,C原子之间有着优先于自身成键的特性.进一步,我们应用热力学模型计算了温度对于CnVNi(n=1,2,3,4)团簇浓度及空位浓度的影响.研究表明本征Ni空位的浓度会随着温度的升高而升高.在NiAl金属间化合物中,大多数的杂质C原子会被Ni空位俘获而不是存在于远离Ni空位的八面体间隙位置.由于C原子被Ni空位俘获的过程是一个放热过程,使得体系温度升高,因此会进一步激发更多的Ni空位产生.但是在一定的温度范围内(温度小于700 K时),Ni空位均以CnVNi团簇的形式存在.
    By using a first-principles pseudopotential method based on the density functional theory and Vienna ab initio Simulation Package (VASP), we investigate the multiple trapping of C by Ni vacancy (VNi) and its temperature effects in NiAl intermetallics. A single C atom is energetically and favorably situated at the Ni-rich octahedron interstitial site that surrounds Ni vacancy, which is shown via calculating the formation energy of C atom in NiAl with Ni vacancy system. Single C atom prefers to interact with neighboring Ni atom and Al atom to form a covalent bond. In NiAl intermetallics, C atoms prefer to be trapped in the Ni vacancy in the sequential way, thus easily forming the CnVNi (n=1, 2, 3, 4) clusters, in which the C4VNi clusters are most energetically favorable. It is interesting to find that when C atoms are trapped by Ni vacancy, all the C atoms themselves prefer to be combined with each other to form a bond, surrounding Ni vacancy. With the C atoms further added, both the charge density and the deformation charge prefer to bind with each other despite the Ni or Al environment and the intrinsic bonding properties of CC bond contain obvious covalent characteristics. Furthermore, using first-principles calculations combined with statistical model, we quantitatively predict point defect concentration as a function of temperature in NiAl intermetallics. It is concluded that the concentration of intrinsic Ni vacancies (VNi) will obviously increase as temperature increases. With the increase of temperature, the concentration of C atoms in the CnVNi cluster is higher than that at the intrinsic position. Besides, it indicates that most of C atoms in NiAl intermetallics are trapped by Ni vacancy, which is due to the larger binding energy of the CnVNi clusters and most of the C atoms are trapped directly by vacancies at room temperature or high temperature to form CnVNi clusters. Since the formation of CnVNi clusters is a process of heat releasing which will further increase the temperature of the NiAl system and produce more and more Ni vacancies, we can conclude that much more vacancies are created as a result of the presence of C impurity in NiAl intermetallics. However, the Ni vacancies exist in the form of CnVNi clusters from our calculation in a certain temperature range (less than 700 K). The existence of this kind of CnVNi cluster can effectively restrain the generations of cracks in the vacancies, which will produce some influences on the mechanical properties of NiAl intermetallic compound. Consequently, our results will provide a valuable reference for understanding the effects of C and vacancy on the mechanical properties of the NiAl intermetallics.
      通信作者: 胡雪兰, huxlemma@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号:51201181)和中国民航大学科研启动基金(批准号:08QD14X)资助的课题.
      Corresponding author: Hu Xue-Lan, huxlemma@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51201181) and the Scientific Research Fund of Civil Aviation University of China (Grant No. 08QD14X).
    [1]

    Hou S X, Liu D Y, Liu Z D, Ma Y M 2007 Heat Treat. Met. 3260(in Chinese)[侯世香, 刘东雨, 刘宗德, 马一民2007金属热处理32 60]

    [2]

    Sun Y, Liu R Y, Zhang J S, Zhu M L 2003 Mater. Rev. 17 10(in Chinese)[孙岩, 刘瑞岩, 张俊善, 祝美丽2003材料导报17 10]

    [3]

    Li H, Han P, Qi Y H, Tong S W 2006 J. Liaoning University of Technology 26 394(in Chinese)[李慧, 韩萍, 齐义辉, 佟圣旺2006辽宁工学院学报26 394]

    [4]

    Stoloff N S 1996 Microstructure and Properties of Materials 1 53

    [5]

    Djajaputra D, Cooper B R 2001 Phys. Rev. B 64 085121

    [6]

    Djajaputra D, Cooper B R 2002 Phys. Rev. B 66 205108

    [7]

    Hu X L, Ma J, Dou H W, Niu Y F, Zhang Y F, Song Q G 2014 Prog. Nat. Sci.:Mater. Int. 6 637

    [8]

    Li H 2007 M. S. Thesis (Liaoning:Liaoning Institute) (in Chinese)[李慧2007硕士学位论文(辽宁:辽宁工学院)]

    [9]

    Qi Y H, Li H, Han P, Guo J T 2008 Rare Metal Mater. and Eng. 37 887(in Chinese)[齐义辉, 李慧, 韩萍, 郭建亭2008稀有金属材料与工程37 887]

    [10]

    Zhang L Z 2007 M. S. Thesis (Beijing:Chinese Academy (in Chinese)[张兰芝2007硕士学位论文(北京:中国科学院)]

    [11]

    Liu Y L, Dai Z H, Wang W T 2014 Comput. Mater. Sci. 83 1

    [12]

    Liu Y L, Zhou H B, Zhang Y, Duan C 2012 Comput. Mater. Sci. 62 282

    [13]

    Hautojarvi P, Johansson J, Vehanen A 1980 Phys. Rev. Lett. 44 1326

    [14]

    Domains C, Becquart C S, Foct J 2004 Phys. Rev. B 69 144112

    [15]

    Gui L J, Liu Y L, Jin S, Zhang Y, Lu J H, Yao J E 2013 J. Nucl. Mater. 442 S688

    [16]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [17]

    Vanderbilt D R 1990 Phys. Rev. B 41 7892

    [18]

    Monkhorst M J, Pack J D 1976 Phys. Rev. B 13 5188

    [19]

    Jiang D E, Carter E A 2003 Phys. Rev. B 67 214103

    [20]

    Fu C C, Meslin E, Barbu A 2008 Solid State Phenom. 139 157

    [21]

    Forst C J, Slycke J, van Vliet K J 2006 Phys. Rev. Lett. 96 175501

  • [1]

    Hou S X, Liu D Y, Liu Z D, Ma Y M 2007 Heat Treat. Met. 3260(in Chinese)[侯世香, 刘东雨, 刘宗德, 马一民2007金属热处理32 60]

    [2]

    Sun Y, Liu R Y, Zhang J S, Zhu M L 2003 Mater. Rev. 17 10(in Chinese)[孙岩, 刘瑞岩, 张俊善, 祝美丽2003材料导报17 10]

    [3]

    Li H, Han P, Qi Y H, Tong S W 2006 J. Liaoning University of Technology 26 394(in Chinese)[李慧, 韩萍, 齐义辉, 佟圣旺2006辽宁工学院学报26 394]

    [4]

    Stoloff N S 1996 Microstructure and Properties of Materials 1 53

    [5]

    Djajaputra D, Cooper B R 2001 Phys. Rev. B 64 085121

    [6]

    Djajaputra D, Cooper B R 2002 Phys. Rev. B 66 205108

    [7]

    Hu X L, Ma J, Dou H W, Niu Y F, Zhang Y F, Song Q G 2014 Prog. Nat. Sci.:Mater. Int. 6 637

    [8]

    Li H 2007 M. S. Thesis (Liaoning:Liaoning Institute) (in Chinese)[李慧2007硕士学位论文(辽宁:辽宁工学院)]

    [9]

    Qi Y H, Li H, Han P, Guo J T 2008 Rare Metal Mater. and Eng. 37 887(in Chinese)[齐义辉, 李慧, 韩萍, 郭建亭2008稀有金属材料与工程37 887]

    [10]

    Zhang L Z 2007 M. S. Thesis (Beijing:Chinese Academy (in Chinese)[张兰芝2007硕士学位论文(北京:中国科学院)]

    [11]

    Liu Y L, Dai Z H, Wang W T 2014 Comput. Mater. Sci. 83 1

    [12]

    Liu Y L, Zhou H B, Zhang Y, Duan C 2012 Comput. Mater. Sci. 62 282

    [13]

    Hautojarvi P, Johansson J, Vehanen A 1980 Phys. Rev. Lett. 44 1326

    [14]

    Domains C, Becquart C S, Foct J 2004 Phys. Rev. B 69 144112

    [15]

    Gui L J, Liu Y L, Jin S, Zhang Y, Lu J H, Yao J E 2013 J. Nucl. Mater. 442 S688

    [16]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [17]

    Vanderbilt D R 1990 Phys. Rev. B 41 7892

    [18]

    Monkhorst M J, Pack J D 1976 Phys. Rev. B 13 5188

    [19]

    Jiang D E, Carter E A 2003 Phys. Rev. B 67 214103

    [20]

    Fu C C, Meslin E, Barbu A 2008 Solid State Phenom. 139 157

    [21]

    Forst C J, Slycke J, van Vliet K J 2006 Phys. Rev. Lett. 96 175501

  • [1] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究.  , 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [2] 刘东静, 周福, 陈帅阳, 胡志亮. 氮化镓/石墨烯/碳化硅异质界面热输运特性的分子动力学研究.  , 2023, 72(15): 157901. doi: 10.7498/aps.72.20230537
    [3] 吕杰, 方贺男, 吕涛涛, 孙星宇. MgO基磁性隧道结温度-偏压相图的理论研究.  , 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905
    [4] 陈琼, 薛春霞, 王勋. 基于温度效应的无限长压电圆杆纵波分析.  , 2021, 70(3): 035201. doi: 10.7498/aps.70.20200774
    [5] 王云天, 曾祥国, 杨鑫. 高应变率下温度对单晶铁中孔洞成核与生长影响的分子动力学研究.  , 2019, 68(24): 246102. doi: 10.7498/aps.68.20190920
    [6] 金鑫, 杨春明, 滑文强, 李怡雯, 王劼. PS3000-b-PAA5000球形胶束温度效应的原位小角X射线散射技术研究.  , 2018, 67(4): 048301. doi: 10.7498/aps.67.20172167
    [7] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟.  , 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [8] 山磊, 田煜, 孟永钢, 张向军. 分散介质和温度对纳米二氧化硅胶体剪切增稠行为的影响.  , 2015, 64(6): 068301. doi: 10.7498/aps.64.068301
    [9] 王芳, 汪金芝, 冯唐福, 孙仁兵, 余盛. La(Fe, Si)13化合物的居里温度机制.  , 2014, 63(12): 127501. doi: 10.7498/aps.63.127501
    [10] 郭巧能, 曹义刚, 孙强, 刘忠侠, 贾瑜, 霍裕平. 温度对超薄铜膜疲劳性能影响的分子动力学模拟.  , 2013, 62(10): 107103. doi: 10.7498/aps.62.107103
    [11] 郑晖, 申亮, 白彬, 孙博. NiAl化合物表面成分的准标度关系与偏离放大效应.  , 2012, 61(1): 016104. doi: 10.7498/aps.61.016104
    [12] 强蕾, 姚若河. 非晶硅薄膜晶体管沟道中阈值电压及温度的分布.  , 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [13] 吴亚敏, 陈国庆. 带壳颗粒复合介质光学双稳的温度效应.  , 2009, 58(3): 2056-2060. doi: 10.7498/aps.58.2056
    [14] 陈英杰, 肖景林. 抛物线性限制势二能级系统量子点量子比特的温度效应.  , 2008, 57(11): 6758-6762. doi: 10.7498/aps.57.6758
    [15] 尚家香, 喻显扬. 3d过渡金属在NiAl中的占位及对键合性质的影响.  , 2008, 57(4): 2380-2385. doi: 10.7498/aps.57.2380
    [16] 谌雄文, 贺达江, 吴绍全, 宋克慧. 嵌入平行量子点的非平衡介观环路的极化电流.  , 2006, 55(8): 4287-4291. doi: 10.7498/aps.55.4287
    [17] 徐 洲, 王秀喜, 梁海弋, 吴恒安. 纳米单晶与多晶铜薄膜力学行为的数值模拟研究.  , 2004, 53(11): 3637-3643. doi: 10.7498/aps.53.3637
    [18] 王剑屏, 徐娜军, 张廷庆, 汤华莲, 刘家璐, 刘传洋, 姚育娟, 彭宏论, 何宝平, 张正选. 金属-氧化物-半导体器件γ辐照温度效应.  , 2000, 49(7): 1331-1334. doi: 10.7498/aps.49.1331
    [19] 张海燕, 何艳阳, 薛新民, 梁礼正. 碳弧法中形成的碳包铁及其化合物纳米晶.  , 2000, 49(2): 361-364. doi: 10.7498/aps.49.361
    [20] 朱宰万, 徐济安. 周期系金属元素和A-15化合物超导转变温度的计算.  , 1978, 27(1): 112-117. doi: 10.7498/aps.27.112
计量
  • 文章访问数:  6297
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-29
  • 修回日期:  2016-07-25
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map