搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于流动显示的压缩拐角流动结构定量研究

武宇 易仕和 何霖 全鹏程 朱杨柱

引用本文:
Citation:

基于流动显示的压缩拐角流动结构定量研究

武宇, 易仕和, 何霖, 全鹏程, 朱杨柱

Quantitative analysis of flow structures in compression ramp based on flow visualization

Wu Yu, Yi Shi-He, He Lin, Quan Peng-Cheng, Zhu Yang-Zhu
PDF
导出引用
  • 在Ma = 3.0的超声速风洞中, 采用NPLS技术对上游边界层为层流的25° 压缩拐角进行了流动显示实验, 获得了压缩拐角的精细流动结构, 边界层、剪切层和激波等结构清晰可见. 基于流动显示数据, 采用间歇性、空间相关性和分形分析对流动结构进行了定量研究, 计算了边界层和分离区的间歇因子分布, 获取了边界层中拟序结构和结构角的大小, 给出了边界层分形维数的分布, 并与Ringuette和Bookey等的实验结果进行比较, 阐述了压缩拐角流动结构的定量特征.
    Flow visualization studies on the laminar boundary layer flows over a 25° compression ramp are carried out via NPLS technique in a Mach 3.0 wind tunnel; fine flow structures such as boundary layer, shear layer, and shock waves may be visualized clearly. Based on the visualized data, quantitative analysis is conducted using intermittency, spatial correlations, and fractal theory. The intermittency function γ of the boundary layer and the interaction region is calculated, and the size of coherent structures and the structure angle θ for the boundary layer are obtained, so that the fractal dimension of the boundary layer in streamwise can be provided. Experimental data in the present paper have been compared with the results of Ringuette and Bookey, and the quantitative characteristics of flow structures are discussed in detail.
    • 基金项目: 国家自然科学基金(批准号: 11172326和11302256)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172326, 11302256).
    [1]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702 (in Chinese) [武宇,易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 184702]

    [2]

    Gramann R A, Dolling D S 1990 AIAA Paper 0380

    [3]

    Gramann R A, Dolling D S 1992 AIAA Paper 0744

    [4]

    Chan S C, Clemens N T, Dolling D S 1995 AIAA Paper 2195

    [5]

    Ganapathisubramani B, Clemens N T, Dolling D S 2007 J. Fluid Mech. 585 369

    [6]

    Wu M W, Martin M P 2008 J. Fluid Mech. 594 71

    [7]

    Gieseking D A, Edwards J R 2012 AIAA J. 50 2057

    [8]

    Ganapathisubramani B, Clemens N T, Dolling D S 2009 J. Fluid Mech. 636 397

    [9]

    Prince S A, Vannahme M, Stollery J L 1999 AIAA Paper 0147

    [10]

    Ringuette M J, Smits A J 2007 AIAA Paper 4113

    [11]

    Verma S B, Manisankar C 2012 AIAA J. 50 2753

    [12]

    Verma S B, Manisankar C, Raju C 2012 Shock Waves 22 327

    [13]

    Ganapathisubramani B, Clemens N T, Dolling D S 2006 AIAA Paper 0324

    [14]

    Antonia R A 1981 Annu. Rev. Fluid Mech. 13 131

    [15]

    Wallace J M, Eckelmann H, Brodkey R S 1972 J. Fluid Mech. 54 39

    [16]

    Willmarth W W, Lu S S 1972 J. Fluid Mech. 55 65

    [17]

    Berkooz G, Holmes P, Lumley J L 1993 Annu. Rev. Fluid Mech. 25 539

    [18]

    Adrian R J, Moin P 1988 J. Fluid Mech. 190 531

    [19]

    Chen J, F Hussain, Pei J, She Z S 2014 J. Fluid Mech. 742 291

    [20]

    Sreenivasan K R, Meneveau C 1986 J. Fluid Mech. 173 357

    [21]

    Sreenivasan K R 1991 Annu. Rev. Fluid Mech. 23 539

    [22]

    Smith M W, Smits A J 1995 Exp Fluids 18 288

    [23]

    Bourdon C J, Dutton J C 1999 Phys Fluids 11 201

    [24]

    Poggie J, Erbland P J, Smits A J, Miles R B 2004 Exp Fluids 37 438

    [25]

    Ganapathisubramani B, Hutchins N, Hambleton W T, Longmire E K, Marusic I 2005 J. Fluid Mech. 524 57

    [26]

    Elliott G S, Samimy M, Arnette S A 1995 Phys Fluids 7 864

    [27]

    Bookey P, Wyckham C, Smits A J, Martin M P 2005 AIAA Paper 0309

    [28]

    Ringuette M J, Bookey P, Wyckham C, Smits A J 2009 AIAA J. 47 373

    [29]

    Humble R A, Peltier S J, Bowersox R D W 2012 Phys Fluids 24 106103

    [30]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China 52 2001

    [31]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2009 Sci. China 52 3640

    [32]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 Chin. Sci. Bull. 52 1297

    [33]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 24704

    [34]

    Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chin. Sci. Bull. 57 584

    [35]

    Zhang Q H, Yi S H, Zhu Y Z, Chen Z, Wu Y 2013 Chin. Phys. Lett. 30 044701

    [36]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 62 084219]

    [37]

    Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703 (in Chinese) [全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 63 084703]

    [38]

    Klebanoff P S 1955 NACA TR 1247

  • [1]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702 (in Chinese) [武宇,易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 184702]

    [2]

    Gramann R A, Dolling D S 1990 AIAA Paper 0380

    [3]

    Gramann R A, Dolling D S 1992 AIAA Paper 0744

    [4]

    Chan S C, Clemens N T, Dolling D S 1995 AIAA Paper 2195

    [5]

    Ganapathisubramani B, Clemens N T, Dolling D S 2007 J. Fluid Mech. 585 369

    [6]

    Wu M W, Martin M P 2008 J. Fluid Mech. 594 71

    [7]

    Gieseking D A, Edwards J R 2012 AIAA J. 50 2057

    [8]

    Ganapathisubramani B, Clemens N T, Dolling D S 2009 J. Fluid Mech. 636 397

    [9]

    Prince S A, Vannahme M, Stollery J L 1999 AIAA Paper 0147

    [10]

    Ringuette M J, Smits A J 2007 AIAA Paper 4113

    [11]

    Verma S B, Manisankar C 2012 AIAA J. 50 2753

    [12]

    Verma S B, Manisankar C, Raju C 2012 Shock Waves 22 327

    [13]

    Ganapathisubramani B, Clemens N T, Dolling D S 2006 AIAA Paper 0324

    [14]

    Antonia R A 1981 Annu. Rev. Fluid Mech. 13 131

    [15]

    Wallace J M, Eckelmann H, Brodkey R S 1972 J. Fluid Mech. 54 39

    [16]

    Willmarth W W, Lu S S 1972 J. Fluid Mech. 55 65

    [17]

    Berkooz G, Holmes P, Lumley J L 1993 Annu. Rev. Fluid Mech. 25 539

    [18]

    Adrian R J, Moin P 1988 J. Fluid Mech. 190 531

    [19]

    Chen J, F Hussain, Pei J, She Z S 2014 J. Fluid Mech. 742 291

    [20]

    Sreenivasan K R, Meneveau C 1986 J. Fluid Mech. 173 357

    [21]

    Sreenivasan K R 1991 Annu. Rev. Fluid Mech. 23 539

    [22]

    Smith M W, Smits A J 1995 Exp Fluids 18 288

    [23]

    Bourdon C J, Dutton J C 1999 Phys Fluids 11 201

    [24]

    Poggie J, Erbland P J, Smits A J, Miles R B 2004 Exp Fluids 37 438

    [25]

    Ganapathisubramani B, Hutchins N, Hambleton W T, Longmire E K, Marusic I 2005 J. Fluid Mech. 524 57

    [26]

    Elliott G S, Samimy M, Arnette S A 1995 Phys Fluids 7 864

    [27]

    Bookey P, Wyckham C, Smits A J, Martin M P 2005 AIAA Paper 0309

    [28]

    Ringuette M J, Bookey P, Wyckham C, Smits A J 2009 AIAA J. 47 373

    [29]

    Humble R A, Peltier S J, Bowersox R D W 2012 Phys Fluids 24 106103

    [30]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China 52 2001

    [31]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2009 Sci. China 52 3640

    [32]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 Chin. Sci. Bull. 52 1297

    [33]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 24704

    [34]

    Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chin. Sci. Bull. 57 584

    [35]

    Zhang Q H, Yi S H, Zhu Y Z, Chen Z, Wu Y 2013 Chin. Phys. Lett. 30 044701

    [36]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 62 084219]

    [37]

    Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703 (in Chinese) [全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 63 084703]

    [38]

    Klebanoff P S 1955 NACA TR 1247

  • [1] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电.  , 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [2] 苟学强, 张义军, 李亚珺, 陈明理. 闪电双向先导理论及观测:极性不对称、不稳定及间歇性.  , 2018, 67(20): 205201. doi: 10.7498/aps.67.20181079
    [3] 张冬冬, 谭建国, 李浩, 侯聚微. 基于三角波瓣混合器的超声速流场精细结构和掺混特性.  , 2017, 66(10): 104702. doi: 10.7498/aps.66.104702
    [4] 冈敦殿, 易仕和, 赵云飞. 超声速平板圆台突起物绕流实验和数值模拟研究.  , 2015, 64(5): 054705. doi: 10.7498/aps.64.054705
    [5] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究.  , 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [6] 陈书赢, 王海斗, 徐滨士, 康嘉杰. 基于分形理论的超音速等离子喷涂层界面结合行为研究.  , 2014, 63(15): 156801. doi: 10.7498/aps.63.156801
    [7] 蔡建超, 郭士礼, 游利军, 胡祥云. 裂缝-孔隙型双重介质油藏渗吸机理的分形分析.  , 2013, 62(1): 014701. doi: 10.7498/aps.62.014701
    [8] 尚慧琳. 受迫Holmes-Duffing系统安全域分形及时滞速度反馈控制.  , 2012, 61(18): 180506. doi: 10.7498/aps.61.180506
    [9] 行鸿彦, 龚平, 徐伟. 海杂波背景下小目标检测的分形方法.  , 2012, 61(16): 160504. doi: 10.7498/aps.61.160504
    [10] 吴国成, 石祥超. 非光滑热曲线的分数阶次可微性研究.  , 2012, 61(19): 190502. doi: 10.7498/aps.61.190502
    [11] 杨娟, 卞保民, 闫振纲, 王春勇, 李振华. 典型随机信号特征参数统计分布的分形特性.  , 2011, 60(10): 100506. doi: 10.7498/aps.60.100506
    [12] 杨娟, 卞保民, 彭刚, 李振华. 随机信号双参数脉冲模型的分形特征.  , 2011, 60(1): 010508. doi: 10.7498/aps.60.010508
    [13] 刘耀民, 刘中良, 黄玲艳. 分形理论结合相变动力学的冷表面结霜过程模拟.  , 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [14] 张丽, 刘树堂. 薄板热扩散分形生长的环境干扰控制.  , 2010, 59(11): 7708-7712. doi: 10.7498/aps.59.7708
    [15] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响.  , 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [16] 姜泽辉, 赵海发, 郑瑞华. 完全非弹性蹦球倍周期运动的分形特征.  , 2009, 58(11): 7579-7583. doi: 10.7498/aps.58.7579
    [17] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究.  , 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
    [18] 李 彤, 商朋见. 多重分形在掌纹识别中的研究.  , 2007, 56(8): 4393-4400. doi: 10.7498/aps.56.4393
    [19] 疏学明, 方 俊, 申世飞, 刘勇进, 袁宏永, 范维澄. 火灾烟雾颗粒凝并分形特性研究.  , 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [20] 陈京元, 陈式刚, 王光瑞. 间歇性大气湍流中光传播问题的近Gauss极限分析.  , 2005, 54(7): 3123-3131. doi: 10.7498/aps.54.3123
计量
  • 文章访问数:  5651
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-14
  • 修回日期:  2014-06-05
  • 刊出日期:  2015-01-05

/

返回文章
返回
Baidu
map