-
Current network security defense strategy focuses on deploying to high degree nodes where there are mainly two aspects of the problem: One is that the high-degree nodes are not the backbone nodes for the network communication in many occasions; another is that these nodes are not always the most effective ones for forwarding and propagation information. With the disadvantage of current network defense strategy deployment, this paper tends to improve the traditional diffusion model of malicious program propagation and measure the importance of network nodes by using intermediate hops, then the important node for recommended deployment technology based on betweenness center control and closeness center control model is put forward. Experimental results show that the nodes with high betweenness centrality and low closeness centrality as compared with the high degree nodes can more effectively quarantine the spreading of the worms whether in scale-free network or in small world network. Meanwhile, the clustering behavior of a network will also play a certain negative impact on the spread of malicious programs.
-
Keywords:
- high-degree nodes /
- betweenness centrality /
- closeness centrality /
- clustering
[1] Zou C C, Towsley D, Gong W B 2007 IEEE Trans. Dependable Sec. Comput. 4 105
[2] Fan X, Xiang Y 2010 Future Gener. Comput.Syst. 26 1433
[3] Yan G H, Chen G L, Eidenbenz S, Li N 2011 Proceedings of the 2011 ACM Symposium on Information, Computer and Communications Security Hong Kong, China, March 22-24 2011 p196
[4] Xing Q B, Zhang Y B, Liang Z N 2011 Chin. Phys. B 20 120201
[5] Song Y R, Jiang G P, Gong Y W 2012 Chin. Phys. B 21 010205
[6] Lu Y L, Jiang G P, Song Y R 2012 Chin. Phys. B 21 100207
[7] Maksim K, Lazaros K G, Shlomo H, Fredrik L, Lev M, Stanley H E, Hernan A M 2011 Nature Physics 6 888
[8] Schneider C M, Moreira A A, Andrade J S, Havlin S, Herrmann H J 2011 PNAS 108 3838
[9] Zhao D W, Li L X, Peng H P, Luo Q, Yang Y X 2014 Phys. Lett. A 10 770
[10] Song Y R, Jiang G P 2010 Acta Phys. Sin. 59 705 (in Chinese) [宋玉蓉, 蒋国平 2010 59 705]
[11] Ebel H, Mielsch L, Bornholdt S 2002 Phys. Rev. E 66 035103
[12] Mislove A, Marcon M, Gummadi K P, Druschel P, Bhattacharjee B 2007 Proceedings of 2007 ACM/USENIX Internet Measurement Conference California, USA, October 24-26 2007 p29
[13] Zou C C, Gong W B, Towsley D, Gao L 2005 IEEEACM Trans. Networking 13 961
[14] Newman M E J 2005 Social Networks 27 39
[15] Chen D B, Gao H, L L Y, Zhou T 2013 PLoS ONE 8 77455
-
[1] Zou C C, Towsley D, Gong W B 2007 IEEE Trans. Dependable Sec. Comput. 4 105
[2] Fan X, Xiang Y 2010 Future Gener. Comput.Syst. 26 1433
[3] Yan G H, Chen G L, Eidenbenz S, Li N 2011 Proceedings of the 2011 ACM Symposium on Information, Computer and Communications Security Hong Kong, China, March 22-24 2011 p196
[4] Xing Q B, Zhang Y B, Liang Z N 2011 Chin. Phys. B 20 120201
[5] Song Y R, Jiang G P, Gong Y W 2012 Chin. Phys. B 21 010205
[6] Lu Y L, Jiang G P, Song Y R 2012 Chin. Phys. B 21 100207
[7] Maksim K, Lazaros K G, Shlomo H, Fredrik L, Lev M, Stanley H E, Hernan A M 2011 Nature Physics 6 888
[8] Schneider C M, Moreira A A, Andrade J S, Havlin S, Herrmann H J 2011 PNAS 108 3838
[9] Zhao D W, Li L X, Peng H P, Luo Q, Yang Y X 2014 Phys. Lett. A 10 770
[10] Song Y R, Jiang G P 2010 Acta Phys. Sin. 59 705 (in Chinese) [宋玉蓉, 蒋国平 2010 59 705]
[11] Ebel H, Mielsch L, Bornholdt S 2002 Phys. Rev. E 66 035103
[12] Mislove A, Marcon M, Gummadi K P, Druschel P, Bhattacharjee B 2007 Proceedings of 2007 ACM/USENIX Internet Measurement Conference California, USA, October 24-26 2007 p29
[13] Zou C C, Gong W B, Towsley D, Gao L 2005 IEEEACM Trans. Networking 13 961
[14] Newman M E J 2005 Social Networks 27 39
[15] Chen D B, Gao H, L L Y, Zhou T 2013 PLoS ONE 8 77455
Catalog
Metrics
- Abstract views: 5386
- PDF Downloads: 264
- Cited By: 0