-
A macro-micro coupled model is developed to simulate the competitive dendrite growths in different areas of the welding pool in the solidification process. The transient solidification conditions in welding pool are obtained by the three-dimensional (3D) macro-scale FEM model. The thermal conditions used in the micro-scale cellular automata model is obtained from the macro-scale FEM model by using the interpolation algorithm. The simulation results indicate that the micro-scale cellular automata model developed in this paper can simulate the morphologies of dendrites with various growth directions accurately. The solidification conditions in welding pool have obvious effects on the competitive dendrite growth. The dendrites with their preferential orientations parallel to the direction of the highest temperature gradient are more competitive. The morphology of grain structure is determined by the competition among different dendritic arrays. The dendritic arrays with more favorable growth direction can gradually crowd out other dendritic arrays and occupy more space through dendrite branching. The area near the central line of welding pool has a lower temperature gradient, a higher solidification rate, and a higher cooling rate in the solidification process, and such solidification conditions lead to the finer microstructure. The simulation results of the secondary dendrite arm spacing are in agreement with the experimental results under the corresponding solidification conditions.
-
Keywords:
- welding pool /
- dendrite morphology /
- competitive growth /
- cellular automata
[1] Echebarria B, Karma A, Plapp M 2004 Phys. Rev. E 70 061604
[2] Chen Y, Kang X H, Li D Z 2009 Acta Phys. Sin. 58 390 (in Chinese) [陈云, 康秀红, 李殿中 2009 58 390]
[3] Karma A 2001 Phys. Rev. Lett. 87 115701
[4] Nastac L 1999 Acta Mater. 47 4253
[5] Zhu M F, Stefanescu D M 2007 Acta Mater. 55 1741
[6] Beltran-Sanchez L, Stefanescu D M 2003 Metall. Mater. Trans. A 34 367
[7] Beltran-Sanchez L, Stefanescu D M 2004 Metall. Mater. Trans. A 35 2471
[8] Li Q, Li D Z, Qian B N 2004 Acta Phys. Sin. 53 3477 (in Chinese) [李强, 李殿中, 钱百年 2004 53 3477]
[9] Shi Y F, Xu Q Y, Liu B C 2012 Acta Phys. Sin. 61 108101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2012 61 108101]
[10] Michelic S C, Thuswaldner J M, Bernhard C 2010 Acta Mater. 58 2738
[11] Li Y, Kim J 2012 Int. J. Heat Mass Transfer 55 7926
[12] Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 278 (in Chinese) [潘诗琰, 朱鸣芳 2009 58 278]
[13] Pan S, Zhu M 2010 Acta Mater. 58 340
[14] Lu Y, Beckermann C, Ramirez J C 2005 J. Cryst. Growth 280 320
[15] Shi Y F, Xu Q Y, Liu B C 2012 Acta Phys. Sin. 61 108101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2012 61 108101]
[16] Pavlyk V, Dilthey U 2004 Model. Simul. Mater. Sci. Eng. 12 S33
[17] Yin H, Felicelli S D 2010 Acta Mater. 58 1455
[18] Tan W, Wen S, Bailey N, Shin Y C 2011 Metall. Mater. Trans. B 42 1306
[19] Farzadi A, Do-Quang M, Serajzadeh S, Kokabi A, Amberg G 2008 Model. Simul. Mater. Sci. Eng. 16 065005
[20] Fallah V, Amoorezaei M, Provatas N, Corbin S, Khajepour A 2012 Acta Mater. 60 1633
[21] Huang A G, Yu S F, Li Z Y 2008 Trans. China Weld. Inst. 29 45 (in Chinese) [黄安国, 余圣甫, 李志远 2008 焊接学报 29 45]
[22] Wei Y, Zhan X, Dong Z, Yu L 2007 Sci. Technol. Weld. Joi. 12 138
[23] Zhan X, Wei Y, Dong Z 2008 J. Mater. Process. Tech. 208 1
[24] Zhan X, Dong Z, Wei Y, Ma R 2009 J. Cryst. Growth 311 4778
[25] Dong Z, Wang S, Ma R, Wei Y, Song K, Zhai G 2011 J. Mater. Sci. Technol. 27 183
[26] Zheng W J, Dong Z B, Wei Y H, Song K J, Guo J L, Wang Y 2014 Comp. Mater. Sci. 82 525
[27] Ye Y H, Chen X 2002 Chin. Phys. Lett. 19 788
[28] Dong W C, Lu S P, Li D Z, Li Y Y 2011 Int. J. Heat Mass Transfer 54 1420
[29] Lu S P, Dong W C, Li D Z, Li Y Y 2009 Acta Phys. Sin. 58 S94 (in Chinese) [陆善平, 董文超, 李殿中, 李依依 2009 58 S94]
[30] Shi Y, Han R H, Huang J K, Fan D 2012 Acta Phys. Sin. 61 20205 (in Chinese) [石玗, 韩日宏, 黄健康, 樊丁 2012 61 20205]
[31] Luo S, Zhu M Y 2013 Comp. Mater. Sci. 71 10
[32] Yin H, Felicelli S D 2009 Model. Simul. Mater. Sci. Eng. 17 075011
[33] Wang W, Lee P, McLean M 2003 Acta Mater. 51 2971
[34] Nakagawa M, Natsume Y, Ohsasa K 2006 ISIJ Int. 46 909
[35] Paul A, DebRoy T 1988 Metall. Mater. Trans. B 19 851
-
[1] Echebarria B, Karma A, Plapp M 2004 Phys. Rev. E 70 061604
[2] Chen Y, Kang X H, Li D Z 2009 Acta Phys. Sin. 58 390 (in Chinese) [陈云, 康秀红, 李殿中 2009 58 390]
[3] Karma A 2001 Phys. Rev. Lett. 87 115701
[4] Nastac L 1999 Acta Mater. 47 4253
[5] Zhu M F, Stefanescu D M 2007 Acta Mater. 55 1741
[6] Beltran-Sanchez L, Stefanescu D M 2003 Metall. Mater. Trans. A 34 367
[7] Beltran-Sanchez L, Stefanescu D M 2004 Metall. Mater. Trans. A 35 2471
[8] Li Q, Li D Z, Qian B N 2004 Acta Phys. Sin. 53 3477 (in Chinese) [李强, 李殿中, 钱百年 2004 53 3477]
[9] Shi Y F, Xu Q Y, Liu B C 2012 Acta Phys. Sin. 61 108101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2012 61 108101]
[10] Michelic S C, Thuswaldner J M, Bernhard C 2010 Acta Mater. 58 2738
[11] Li Y, Kim J 2012 Int. J. Heat Mass Transfer 55 7926
[12] Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 278 (in Chinese) [潘诗琰, 朱鸣芳 2009 58 278]
[13] Pan S, Zhu M 2010 Acta Mater. 58 340
[14] Lu Y, Beckermann C, Ramirez J C 2005 J. Cryst. Growth 280 320
[15] Shi Y F, Xu Q Y, Liu B C 2012 Acta Phys. Sin. 61 108101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2012 61 108101]
[16] Pavlyk V, Dilthey U 2004 Model. Simul. Mater. Sci. Eng. 12 S33
[17] Yin H, Felicelli S D 2010 Acta Mater. 58 1455
[18] Tan W, Wen S, Bailey N, Shin Y C 2011 Metall. Mater. Trans. B 42 1306
[19] Farzadi A, Do-Quang M, Serajzadeh S, Kokabi A, Amberg G 2008 Model. Simul. Mater. Sci. Eng. 16 065005
[20] Fallah V, Amoorezaei M, Provatas N, Corbin S, Khajepour A 2012 Acta Mater. 60 1633
[21] Huang A G, Yu S F, Li Z Y 2008 Trans. China Weld. Inst. 29 45 (in Chinese) [黄安国, 余圣甫, 李志远 2008 焊接学报 29 45]
[22] Wei Y, Zhan X, Dong Z, Yu L 2007 Sci. Technol. Weld. Joi. 12 138
[23] Zhan X, Wei Y, Dong Z 2008 J. Mater. Process. Tech. 208 1
[24] Zhan X, Dong Z, Wei Y, Ma R 2009 J. Cryst. Growth 311 4778
[25] Dong Z, Wang S, Ma R, Wei Y, Song K, Zhai G 2011 J. Mater. Sci. Technol. 27 183
[26] Zheng W J, Dong Z B, Wei Y H, Song K J, Guo J L, Wang Y 2014 Comp. Mater. Sci. 82 525
[27] Ye Y H, Chen X 2002 Chin. Phys. Lett. 19 788
[28] Dong W C, Lu S P, Li D Z, Li Y Y 2011 Int. J. Heat Mass Transfer 54 1420
[29] Lu S P, Dong W C, Li D Z, Li Y Y 2009 Acta Phys. Sin. 58 S94 (in Chinese) [陆善平, 董文超, 李殿中, 李依依 2009 58 S94]
[30] Shi Y, Han R H, Huang J K, Fan D 2012 Acta Phys. Sin. 61 20205 (in Chinese) [石玗, 韩日宏, 黄健康, 樊丁 2012 61 20205]
[31] Luo S, Zhu M Y 2013 Comp. Mater. Sci. 71 10
[32] Yin H, Felicelli S D 2009 Model. Simul. Mater. Sci. Eng. 17 075011
[33] Wang W, Lee P, McLean M 2003 Acta Mater. 51 2971
[34] Nakagawa M, Natsume Y, Ohsasa K 2006 ISIJ Int. 46 909
[35] Paul A, DebRoy T 1988 Metall. Mater. Trans. B 19 851
Catalog
Metrics
- Abstract views: 6930
- PDF Downloads: 614
- Cited By: 0