-
At a low velocity, the lamellarrod eutectic transition can be controlled by the volume fraction of one eutectic phase only. The factors which affect this kind of transition at high growth velocities are not clear. Based on the competitive growth rule, the criterion for lamellarrod transition is obtained by combining the models of lamellar and rod eutectic growth under rapid solidification conditions. It is shown that for a certain volume fraction, if its value fluctuates around the critical point predicted by the JH Jackson and Hunt model, the increase of the growth velocity or the partition coefficient will lead to the rodlamellar transition. Otherwise, no transition will take place. The lamellarrod eutectic transition at high growth velocity is controlled by the volume fraction variation, which is caused by the increase of the growth velocity.
-
Keywords:
- lamellar /
- rod eutectic transition /
- competitive growth /
- growth velocity
[1] Jackson K A, Hunt J D 1966 Trans. Am. Inst. Min. Engrs. 236 1129
[2] Trivedi R, Magnin P, Kurz W 1987 Acta Metall. Mater. 35 971
[3] Trivedi R, Wang N 2012 Acta Mater. 60 3140
[4] Wang Z Z, Wang N, Yao W J 2010 Acta Phys. Sin. 59 7436 (in Chinese) [王振中, 王楠, 姚文静 2010 59 7436]
[5] Zhu Y C, Wang J C, Yang G C, Zhao D W 2007 Chin. Phys. 16 805
[6] Zhao S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1917
[7] Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Yang G C 2009 Acta Phys. Sin. 58 650 (in Chinese) [杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓 2009 58 650]
[8] Huang Q S, Liu L, Wei X X, Li J F 2012 Acta Phys. Sin. 61 166401 (in Chinese) [黄起森, 刘礼, 韦修勋, 李金富 2012 61 166401]
[9] Kurz W, Fisher D J 1998 Fundamentals of solidification (fourth revised edition) (Switzerland: Trans Tech Publications Ltd) p94
[10] Liu S, Lee J H, Trivedi R 2011 Acta Mater. 59 3102
[11] Mollard F R, Flemings M L 1967 Trans. TMS-AIME 239 1526
[12] Wang Y, Jones H, Evans P V 1998 J. Mater. Sci. 33 5205
[13] David S A, Santhanam A T, Brody H D 1976 Metall Trans A 7 1051
[14] Kurz W, Trivedi R 1991 Metall Trans A 22 3051
[15] Aziz M J, Kaplan T 1988 Acta Metall. 36 2335
[16] Wang N, Kalay E, Trivedi R 2011 Acta Mater. 59 6604
[17] Bewlaya B P, Lipsittb H A, Jacksona M R, Reederb W J, Sutliffa J A 1995 Mater. Sci. Eng. A 192-193 534
[18] Guldberg S, Ryum N 2000 Mater. Sci. Eng. A 289 143
-
[1] Jackson K A, Hunt J D 1966 Trans. Am. Inst. Min. Engrs. 236 1129
[2] Trivedi R, Magnin P, Kurz W 1987 Acta Metall. Mater. 35 971
[3] Trivedi R, Wang N 2012 Acta Mater. 60 3140
[4] Wang Z Z, Wang N, Yao W J 2010 Acta Phys. Sin. 59 7436 (in Chinese) [王振中, 王楠, 姚文静 2010 59 7436]
[5] Zhu Y C, Wang J C, Yang G C, Zhao D W 2007 Chin. Phys. 16 805
[6] Zhao S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1917
[7] Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Yang G C 2009 Acta Phys. Sin. 58 650 (in Chinese) [杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓 2009 58 650]
[8] Huang Q S, Liu L, Wei X X, Li J F 2012 Acta Phys. Sin. 61 166401 (in Chinese) [黄起森, 刘礼, 韦修勋, 李金富 2012 61 166401]
[9] Kurz W, Fisher D J 1998 Fundamentals of solidification (fourth revised edition) (Switzerland: Trans Tech Publications Ltd) p94
[10] Liu S, Lee J H, Trivedi R 2011 Acta Mater. 59 3102
[11] Mollard F R, Flemings M L 1967 Trans. TMS-AIME 239 1526
[12] Wang Y, Jones H, Evans P V 1998 J. Mater. Sci. 33 5205
[13] David S A, Santhanam A T, Brody H D 1976 Metall Trans A 7 1051
[14] Kurz W, Trivedi R 1991 Metall Trans A 22 3051
[15] Aziz M J, Kaplan T 1988 Acta Metall. 36 2335
[16] Wang N, Kalay E, Trivedi R 2011 Acta Mater. 59 6604
[17] Bewlaya B P, Lipsittb H A, Jacksona M R, Reederb W J, Sutliffa J A 1995 Mater. Sci. Eng. A 192-193 534
[18] Guldberg S, Ryum N 2000 Mater. Sci. Eng. A 289 143
Catalog
Metrics
- Abstract views: 7079
- PDF Downloads: 598
- Cited By: 0