Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-section cellular automata model of traffic flow

Liang Jing-Yun Zhang Li-Li Luan Xi-Dao Guo Jin-Lin Lao Song-Yang Xie Yu-Xiang

Citation:

Multi-section cellular automata model of traffic flow

Liang Jing-Yun, Zhang Li-Li, Luan Xi-Dao, Guo Jin-Lin, Lao Song-Yang, Xie Yu-Xiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is more common for drivers to pass through multiple sections to reach destinations instead of single road section. Howerver, most of researches concentrate on improving the effect in an independent section. Based on traditional cellular automata traffic model, a multi-section model is proposed by regarding serverl road sections as a traffic system. In this model, different sections of the road might have different lengths, numbers of lanes or maximal speeds. And vehicles travel from one section to another. The main difficulty lies in dealing with the relationships among the traffic flows of different sections. Besides basic rules in NaSch model, the vehicle inflow rule, crossroad randomization brake rule and crossroad inflow rule is added in this paper to enable vehicles to flow between sections. At the beginning of section, to avoid conflicting at crossroads under open boundary condition, the concept of car pool is introduced when new vehicles enter into sections. Before arriving at the end of section, crossroad randomization brake is used to simulate the influences of crossroads. Speed decreases in probability until lower than a maximal crossroad speed. When leaving the section, vehicles go to the next section with a straight ratio. Also, new vehicles may enter according to traffic condition. Therefore, cellular automata of different sections can be connected in series.Finally, numerical simulation is demonstrated to study the influences of important parameters, including traffic inflow probability, maximal crossroad speed and crossroad randomization brake probability. Compared with traditional models, this model focuses on connecting sections. And improvements of basic models can be implanted easily, thereby increasing the accuracy of the whole model in the future. The experimental result are as follows. 1) According to space-time graphs of different inflow probabilities, there is a new kind of traffic flow called mixed flow. Traffic congestion often starts from crossroads, and spreads to the whole section. And traffic jams in previous section might relieve traffic pressure in latter section. 2) With the increase of traffic inflow probability, crossroads tends to have a greater influence on average speed as well as average traffic density. What is more, the moderate increase of vehicle numbers could cause the road capacity to drop rapidly if it exceeds the threshold value.
      Corresponding author: Luan Xi-Dao, xidaoluan@ccsu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61571453), the Natural Science Foundation of Hunan Province, China (Grant No. 14JJ3010), and the Research Foundation of Education Bureau of Hunan Province, China(Grant No. 15A020).
    [1]

    Hua X D, Wang W, Wang H 2016 Acta Phys. Sin. 65 084503 (in Chinese)[华雪东, 王炜, 王昊 2016 65 084503]

    [2]

    Wen J, Tian H H, Kang S J, Xue Y 2010 Acta Phys. Sin. 59 7693 (in Chinese)[温坚, 田欢欢, 康三军, 薛郁 2010 59 7693]

    [3]

    Nagatani T 2015 Physica A 419 1

    [4]

    Gao Y, Liu Y, Hu H, Ge Y 2016 J. Adv. Transport. 50 1470

    [5]

    Tang T Q, Shi W F, Yang X B, Wang Y P, Lu G Q 2013 Physica A 392 6300

    [6]

    Qian Y S, Feng X, Zeng J W 2017 Physica A 479 509

    [7]

    Hua X D, Wang W, Wang H 2011 Acta Phys. Sin. 60 084502 (in Chinese)[华雪东, 王炜, 王昊 2011 60 084502]

    [8]

    Jing M, Deng W, Wang H, Ji Y J 2012 Acta Phys. Sin. 61 244502 (in Chinese) [敬明, 邓卫, 王昊, 季彦婕 2012 61 244502]

    [9]

    Zhang B, Zhao H Y 2016 J. Kunming Univ. Sci. Technol. (Natural Science Edition) 4 45 (in Chinese) [张博,赵慧英 2016 昆明理工大学学报自然科学版 4 45]

    [10]

    Tang T Q, He J, Yang S C, Shang H Y 2014 Physica A 413 583

    [11]

    Tang T Q, Lou C, Wu Y H, Huang H J, Yang X B 2014 J. Adv. Transport. 48 304

    [12]

    Lakouari N, Bentaleb K, Ez-Zahraouy H, Benyoussef A 2015 Physica A 439 132

    [13]

    Nagel K, Schreckenberg M 1992 J. Phys. I France 2 2221

    [14]

    Fukui M, Ishibashi Y 1996 J. Phys. Soc. Jpn. 65 1868

    [15]

    Wang L, Wang B H, Xu B M, Hu B B 2000 Acta Phys. Sin. 49 1926 (in Chinese)[王雷, 汪秉宏, 许伯铭, 胡斑比 2000 49 1926]

    [16]

    Lei L, Xue Y, Dai S Q 2003 Acta Phys. Sin. 52 2121 (in Chinese)[雷丽, 薛郁, 戴世强 2003 52 2121]

    [17]

    Peng L J, Kang R 2009 Acta Phys. Sin. 58 830 (in Chinese)[彭莉娟, 康瑞 2009 58 830]

    [18]

    Zhang N X, Zhu H B, Lin H, Huang M Y 2015 Acta Phys. Sin. 64 024501 (in Chinese)[张柠溪, 祝会兵, 林亨, 黄梦圆 2015 64 024501]

    [19]

    Lrraga M E, Luis A I 2014 Chin. Phys. B 23 057101

    [20]

    Chen Q, Wang Y 2016 J. Adv. Transport. 50 949

    [21]

    Zhao H T, Yang S, Chen X X 2016 Physica A 462 1301

    [22]

    Qiu X P, Ma L N, Zhou X X, Yang D 2016 J. Transport.Syst. Engineer. Inform. Technol. 16 101 (in Chinese) [邱小平, 马丽娜, 周小霞, 杨达2016 交通运输系统工程与信息16 101]

    [23]

    Qiu X P, Yu D, Sun R X, Yang D 2016 Appl. Res. Comput.33 2611 (in Chinese) [邱小平, 于丹, 孙若晓, 杨达2016 计算机应用研究33 2611]

    [24]

    Bouadi M, Jetto K, Benyoussef A, Kenz A E 2017 Physica A 469 1

    [25]

    Zhang X Q, Wang Y, Hu Q H 2014 Acta Phys. Sin. 63 010508 (in Chinese) [张兴强, 汪滢, 胡庆华 2014 63 010508]

    [26]

    Zhao H T, Mao H Y 2013 Acta Phys. Sin. 62 060501 (in Chinese) [赵韩涛, 毛宏燕 2013 62 060501]

    [27]

    Dong L Y, Xue Y, Dai S Q 2002 Appl. Math. Mech. 23 331 (in Chinese) [董力耘, 薛郁, 戴世强 2002 应用数学和力学 23 331]

    [28]

    Ge H X, Meng X P, Zhu H B, Li Z P 2014 Physica A 408 28

    [29]

    Gipps P G 1981 Transportation Research Part B Methodological 15 105

    [30]

    Tan H L, Liu M R, Kong L J 2002 Acta Phys. Sin. 51 2713 (in Chinese)[谭惠丽, 刘慕仁, 孔令江 2002 51 2713]

    [31]

    Peng L, Tian H L, Kong L J, Liu M R 2003 Acta Phys. Sin. 52 3007 (in Chinese)[彭麟, 谭惠丽, 孔令江, 刘慕仁 2003 52 3007]

    [32]

    Kerner B S, Rehborn H 1996 Phy. Rev. E 53 4275

  • [1]

    Hua X D, Wang W, Wang H 2016 Acta Phys. Sin. 65 084503 (in Chinese)[华雪东, 王炜, 王昊 2016 65 084503]

    [2]

    Wen J, Tian H H, Kang S J, Xue Y 2010 Acta Phys. Sin. 59 7693 (in Chinese)[温坚, 田欢欢, 康三军, 薛郁 2010 59 7693]

    [3]

    Nagatani T 2015 Physica A 419 1

    [4]

    Gao Y, Liu Y, Hu H, Ge Y 2016 J. Adv. Transport. 50 1470

    [5]

    Tang T Q, Shi W F, Yang X B, Wang Y P, Lu G Q 2013 Physica A 392 6300

    [6]

    Qian Y S, Feng X, Zeng J W 2017 Physica A 479 509

    [7]

    Hua X D, Wang W, Wang H 2011 Acta Phys. Sin. 60 084502 (in Chinese)[华雪东, 王炜, 王昊 2011 60 084502]

    [8]

    Jing M, Deng W, Wang H, Ji Y J 2012 Acta Phys. Sin. 61 244502 (in Chinese) [敬明, 邓卫, 王昊, 季彦婕 2012 61 244502]

    [9]

    Zhang B, Zhao H Y 2016 J. Kunming Univ. Sci. Technol. (Natural Science Edition) 4 45 (in Chinese) [张博,赵慧英 2016 昆明理工大学学报自然科学版 4 45]

    [10]

    Tang T Q, He J, Yang S C, Shang H Y 2014 Physica A 413 583

    [11]

    Tang T Q, Lou C, Wu Y H, Huang H J, Yang X B 2014 J. Adv. Transport. 48 304

    [12]

    Lakouari N, Bentaleb K, Ez-Zahraouy H, Benyoussef A 2015 Physica A 439 132

    [13]

    Nagel K, Schreckenberg M 1992 J. Phys. I France 2 2221

    [14]

    Fukui M, Ishibashi Y 1996 J. Phys. Soc. Jpn. 65 1868

    [15]

    Wang L, Wang B H, Xu B M, Hu B B 2000 Acta Phys. Sin. 49 1926 (in Chinese)[王雷, 汪秉宏, 许伯铭, 胡斑比 2000 49 1926]

    [16]

    Lei L, Xue Y, Dai S Q 2003 Acta Phys. Sin. 52 2121 (in Chinese)[雷丽, 薛郁, 戴世强 2003 52 2121]

    [17]

    Peng L J, Kang R 2009 Acta Phys. Sin. 58 830 (in Chinese)[彭莉娟, 康瑞 2009 58 830]

    [18]

    Zhang N X, Zhu H B, Lin H, Huang M Y 2015 Acta Phys. Sin. 64 024501 (in Chinese)[张柠溪, 祝会兵, 林亨, 黄梦圆 2015 64 024501]

    [19]

    Lrraga M E, Luis A I 2014 Chin. Phys. B 23 057101

    [20]

    Chen Q, Wang Y 2016 J. Adv. Transport. 50 949

    [21]

    Zhao H T, Yang S, Chen X X 2016 Physica A 462 1301

    [22]

    Qiu X P, Ma L N, Zhou X X, Yang D 2016 J. Transport.Syst. Engineer. Inform. Technol. 16 101 (in Chinese) [邱小平, 马丽娜, 周小霞, 杨达2016 交通运输系统工程与信息16 101]

    [23]

    Qiu X P, Yu D, Sun R X, Yang D 2016 Appl. Res. Comput.33 2611 (in Chinese) [邱小平, 于丹, 孙若晓, 杨达2016 计算机应用研究33 2611]

    [24]

    Bouadi M, Jetto K, Benyoussef A, Kenz A E 2017 Physica A 469 1

    [25]

    Zhang X Q, Wang Y, Hu Q H 2014 Acta Phys. Sin. 63 010508 (in Chinese) [张兴强, 汪滢, 胡庆华 2014 63 010508]

    [26]

    Zhao H T, Mao H Y 2013 Acta Phys. Sin. 62 060501 (in Chinese) [赵韩涛, 毛宏燕 2013 62 060501]

    [27]

    Dong L Y, Xue Y, Dai S Q 2002 Appl. Math. Mech. 23 331 (in Chinese) [董力耘, 薛郁, 戴世强 2002 应用数学和力学 23 331]

    [28]

    Ge H X, Meng X P, Zhu H B, Li Z P 2014 Physica A 408 28

    [29]

    Gipps P G 1981 Transportation Research Part B Methodological 15 105

    [30]

    Tan H L, Liu M R, Kong L J 2002 Acta Phys. Sin. 51 2713 (in Chinese)[谭惠丽, 刘慕仁, 孔令江 2002 51 2713]

    [31]

    Peng L, Tian H L, Kong L J, Liu M R 2003 Acta Phys. Sin. 52 3007 (in Chinese)[彭麟, 谭惠丽, 孔令江, 刘慕仁 2003 52 3007]

    [32]

    Kerner B S, Rehborn H 1996 Phy. Rev. E 53 4275

  • [1] Zhang Xing-Qiang, Wang Ying, Hu Qing-Hua. Research and simulation on cellular automaton model of mixed traffic flow at intersection. Acta Physica Sinica, 2014, 63(1): 010508. doi: 10.7498/aps.63.010508
    [2] Zhao Han-Tao, Mao Hong-Yan. Cellular automaton simulation of muti-lane traffic flow including emergency vehicle. Acta Physica Sinica, 2013, 62(6): 060501. doi: 10.7498/aps.62.060501
    [3] Qian Yong-Sheng, Zeng Jun-Wei, Du Jia-Wei, Liu Yu-Fei, Wang Min, Wei Jun. Cellular automaton traffic flow model considering influence of accidents. Acta Physica Sinica, 2011, 60(6): 060505. doi: 10.7498/aps.60.060505
    [4] Xue Yu, Liang Yu-Juan. Study on traffic flow affected by the road turning. Acta Physica Sinica, 2010, 59(8): 5325-5331. doi: 10.7498/aps.59.5325
    [5] Xue Yu, Wen Jian, Tian Huan-Huan, Kan San-Jun. Study on the energy consumption of cellular automaton FI model for mixed traffic flow. Acta Physica Sinica, 2010, 59(11): 7693-7700. doi: 10.7498/aps.59.7693
    [6] Zheng Rong-Sen, Lü Ji-Er, Zhu Liu-Hua, Chen Shi-Dong, Pang Shou-Quan. Intersection effects of arterial road for traffic flow. Acta Physica Sinica, 2009, 58(8): 5244-5250. doi: 10.7498/aps.58.5244
    [7] Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. Modeling urban expressway systems with ramps and accessory roads by cellular automaton model. Acta Physica Sinica, 2009, 58(5): 3014-3021. doi: 10.7498/aps.58.3014
    [8] Tian Huan-Huan, Xue Yu, Kang San-Jun, Liang Yu-Juan. Study on the energy consumption using the cellular automaton mixed traffic model. Acta Physica Sinica, 2009, 58(7): 4506-4513. doi: 10.7498/aps.58.4506
    [9] Peng Li-Juan, Kang Rui. One-dimensional cellular automaton model of traffic flow considering drivers’ features. Acta Physica Sinica, 2009, 58(2): 830-835. doi: 10.7498/aps.58.830
    [10] Kang Rui, Peng Li-Juan, Yang Kai. One-dimensional traffic cellular automaton model with consideration of the change of driving rules. Acta Physica Sinica, 2009, 58(7): 4514-4522. doi: 10.7498/aps.58.4514
    [11] Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. A cellular automaton model for studying the on-ramp control of highway. Acta Physica Sinica, 2008, 57(8): 4786-4793. doi: 10.7498/aps.57.4786
    [12] Tian Li-Jun, Liu Tian-Liang, Huang Hai-Jun. Comparative studies on information feedback strategies in traffic networks with overlaping routes. Acta Physica Sinica, 2008, 57(4): 2122-2129. doi: 10.7498/aps.57.2122
    [13] Yue Hao, Shao Chun-Fu, Chen Xiao-Ming, Hao He-Rui. Simulation of bi-directional pedestrian flow based on cellular automata model. Acta Physica Sinica, 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [14] Chen Shi_Dong, Zhu Liu_Hua, Kong Ling_Jiang, Liu Mu_Ren. The effect of Noise-First and anticipation headway on traffic flow. Acta Physica Sinica, 2007, 56(5): 2517-2522. doi: 10.7498/aps.56.2517
    [15] Zhou Hua-Liang, Gao Zi-You, Li Ke-Ping. Cellular automaton model for moving-like block system and study of train’s delay propagation. Acta Physica Sinica, 2006, 55(4): 1706-1710. doi: 10.7498/aps.55.1706
    [16] Guo Si-Ling, Wei Yan-Fang, Xue Yu. On the characteristics of phase transition in CA traffic models. Acta Physica Sinica, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [17] Hua Wei, Lin Bo-Liang. One-dimensional traffic cellular automaton model with considering the vehicle moving status. Acta Physica Sinica, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [18] Mou Yong-Biao, Zhong Cheng-Wen. Cellular automaton model of traffic flow based on safety driving. Acta Physica Sinica, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
    [19] XUE YU, DONG LI-YUN, DAI SHI-QIANG. AN IMPROVED ONE-DIMENSIONAL CELLULAR AUTOMATON MODEL OF TRAFFIC FLOW AND THE EFFECT OF DECELERATION PROBABILITY. Acta Physica Sinica, 2001, 50(3): 445-449. doi: 10.7498/aps.50.445
    [20] Lü XIAO-YANG, KONG LING-JIANG, LIU MU-REN. ANALYSIS ON MACROSCOPIC EQUATION TO ONE-DIMENSIONAL RANDOM TRAFFIC FLOW MODELS. Acta Physica Sinica, 2001, 50(7): 1255-1259. doi: 10.7498/aps.50.1255
Metrics
  • Abstract views:  7673
  • PDF Downloads:  298
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2017
  • Accepted Date:  18 August 2017
  • Published Online:  05 October 2017

/

返回文章
返回
Baidu
map