Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of the electronic structure and NO2-sensing properties of Ti-doped W18O49 nanowire

Qin Yu-Xiang Liu Mei Hua De-Yan

Citation:

First-principles study of the electronic structure and NO2-sensing properties of Ti-doped W18O49 nanowire

Qin Yu-Xiang, Liu Mei, Hua De-Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The geometry and band structures as well as the density of states of Ti-doped nonstoichiometric W18O49 nanowire are studied by employing the ab-initio plane-wave ultra-soft pseudo potential technique based on the density functional theory. Meanwhile, the adsorption and NO2-sensing properties of the doped nanowire are analyzed by further calculating the adsorption energy, planar averaged charge density difference and atomic Mulliken charge population of the NO2/Ti-W18O49 nanowire adsorption system. The results reveal that Ti-doping modifies the electronic structure and then the gas sensitivity of W18O49 nanowire obviously. After Ti-doping, new electronic states are introduced and the band structure near Fermi level (EF) is changed obviously, resulting in the variation of the band gap and EF position and then the increase of electronic conductivity. The adsorbed NO2 molecule acts as a charge accepter to extract electrons from the conduction band of W18O49 nanowire, causing the gas-sensing response due to the conductivity change of the nanowire. NO2 adsorption on Ti-doped W18O49 nanowire can cause more electrons to transfer from nanowire to NO2 molecule than the case on pure W18O49 nanowire, theoretically suggesting the validity of Ti-doping that can improve the sensitivity of W18O49 nanowire. The population calculations on different gas molecules adsorbed on Ti-doped W18O49 nanowire further indicate the much good sensitivity and selectivity of the doped nanowire to NO2 gas.
    • Funds: Project supported by the National Natural Science Foundation (Grant Nos. 61274074, 61271079) and the Tianjin Natural Science Foundation, China (Grant No. 11JCZDJC15300).
    [1]

    Baeck S H, Choi K S, Jaramillo T F, Stucky G D, McFarland E W 2003 Adv. Mater. 15 1269

    [2]

    Li X L, Lou T J, Sun X M, Li Y D 2004 Inorg. Chem. 43 5442

    [3]

    Santato C, Odziemkowski M, Ulmann M, Augustynski J 2001 J. Am. Chem. Soc. 123 10639

    [4]

    Rout C S, Ganesh K, Govindaraj A, Rao C N R 2006 Appl. Phys. A: Mater. 85 241

    [5]

    Gerlitz R A, Benkstein K D, Lahr D L, Hertz J L, Montgomery C B, Bonevich J E, Semancik S, Tarlov M J 2009 Sens. Actuators B 136 257

    [6]

    Qin Y X, Li X, Wang F, Hu M 2011 J. Alloy Compd. 509 8401

    [7]

    Kukkola J, Mohl M, Leino A R, Möklin J, Halonen N, Shchukarev A, Konya Z, Jantunen H, Kordas K 2013 Sens. Actuat. B 186 90

    [8]

    Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504

    [9]

    Qin Y X, Sun X B, Li X, Hu M 2012 Sens. Actuators B 162 224

    [10]

    Shen Y B, Yamazaki T, Liu Z F, Meng D, Kikuta T, Nakatani N, Saito M, Mori M 2009 Sens. Actuat. B 135 524

    [11]

    Kim Y S, Ha S C, Kim K, Yang H, Choi S Y, Kim Y T, Park J T, Lee C H, Choi J, Paek J, Lee K 2005 Appl. Phys. Lett. 86 213105

    [12]

    Hu M, Zhang J, Wang W D, Qin Y X 2011 Chin. Phys. B 20 082101

    [13]

    Shim Y S, Zhang L H, Kim D H, Kim Y H, Choi Y R, Nahm S H, Kang C Y, Lee W Y, Jang H W 2014 Sens. Actuat. B 198 294

    [14]

    Oison V, Saadi L, Lambert-Mauriat C, Hayn R 2011 Sens. Actuat. B 160 505

    [15]

    Liu F, Guo T Y, Xu Z, Gan H B, Li L F, Chen J, Deng S Z, Xu N S, Golberg D, Bando Y 2013 Mater. Chem. C 1 3217

    [16]

    Qin Y X, Hu M, Zhang J 2010 Sens. Actuat. B 150 339

    [17]

    Chen C H, Wang S J, Ko R M, Kuo Y C, Uang K M, Chen T M, Liou B W, Tsai H Y 2006 Nanotechnology 17 217

    [18]

    Hu W B, Zhao Y M, Liu Z L, Dunnill C W, Gregory D H, Zhu Y Q 2008 Chem. Mater. 20 5657

    [19]

    Huang R, Zhu J, Yu R 2009 Chin. Phys. B 18 3024

    [20]

    Sun S B, Zhao Y M, Xia Y D, Zou Z D, Min G H, Zhu Y Q 2008 Nanotechnology 19 305709

    [21]

    Li Y F, Zhou Z, Chen Y S, Chen Z F 2009 J. Chem. Phys. 130 204706

    [22]

    Li Z B, Wang X, Jia L C, Chi B 2014 J. Mol. Struct. 1061 160

    [23]

    Zhang M, Shi J J 2014 Chin. Phys. B 23 017301

    [24]

    Ji Y J, Du Y J, Wang M S 2013 Chin. Phys. B 22 117103

    [25]

    Zhang P, Liu Y, Yu H, Han S H, Lu Y B, Lu M S, Cong W Y 2014 Chin. Phys. B 23 026103

    [26]

    Hou Q Y, Dong H Y, Ying C, Ma W 2012 Acta Phys. Sin. 61 167102 (in Chinese) [侯清玉, 董红英, 迎春, 马文 2012 61 167102]

    [27]

    Hou Q Y, Zhao C W, Jin Y J, Guan Y Q, Lin L, Li J J 2010 Acta Phys. Sin. 59 4156 (in Chinese) [侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军 2010 59 4156]

    [28]

    Hariharan V, Parthibavarman M, Sekar C 2011 J. Alloys Compd. 509 4788

    [29]

    Vo T, Williamson A J, Galli G 2006 Phys. Rev. B 74 045116

    [30]

    Jin L, Lou S Y, Kong D G, Li Y C, Du Z L 2006 Acta Phys. Sin. 55 4809 (in Chinese) [靳联, 娄世云, 孔德国, 李藴才, 杜祖亮 2006 55 4809]

    [31]

    Zhou Z, Zhao J J, Chen Y S, Schleyer P V R, Chen Z F 2007 Nanotechnology 18 424023

    [32]

    Wanbayor R, Ruangpornvisuti V 2012 Appl. Surf. Sci. 258 3298

    [33]

    Breedon M, Spencer M J S, Yarovsky I 2010 J. Phys. Chem. C 114 16603

  • [1]

    Baeck S H, Choi K S, Jaramillo T F, Stucky G D, McFarland E W 2003 Adv. Mater. 15 1269

    [2]

    Li X L, Lou T J, Sun X M, Li Y D 2004 Inorg. Chem. 43 5442

    [3]

    Santato C, Odziemkowski M, Ulmann M, Augustynski J 2001 J. Am. Chem. Soc. 123 10639

    [4]

    Rout C S, Ganesh K, Govindaraj A, Rao C N R 2006 Appl. Phys. A: Mater. 85 241

    [5]

    Gerlitz R A, Benkstein K D, Lahr D L, Hertz J L, Montgomery C B, Bonevich J E, Semancik S, Tarlov M J 2009 Sens. Actuators B 136 257

    [6]

    Qin Y X, Li X, Wang F, Hu M 2011 J. Alloy Compd. 509 8401

    [7]

    Kukkola J, Mohl M, Leino A R, Möklin J, Halonen N, Shchukarev A, Konya Z, Jantunen H, Kordas K 2013 Sens. Actuat. B 186 90

    [8]

    Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504

    [9]

    Qin Y X, Sun X B, Li X, Hu M 2012 Sens. Actuators B 162 224

    [10]

    Shen Y B, Yamazaki T, Liu Z F, Meng D, Kikuta T, Nakatani N, Saito M, Mori M 2009 Sens. Actuat. B 135 524

    [11]

    Kim Y S, Ha S C, Kim K, Yang H, Choi S Y, Kim Y T, Park J T, Lee C H, Choi J, Paek J, Lee K 2005 Appl. Phys. Lett. 86 213105

    [12]

    Hu M, Zhang J, Wang W D, Qin Y X 2011 Chin. Phys. B 20 082101

    [13]

    Shim Y S, Zhang L H, Kim D H, Kim Y H, Choi Y R, Nahm S H, Kang C Y, Lee W Y, Jang H W 2014 Sens. Actuat. B 198 294

    [14]

    Oison V, Saadi L, Lambert-Mauriat C, Hayn R 2011 Sens. Actuat. B 160 505

    [15]

    Liu F, Guo T Y, Xu Z, Gan H B, Li L F, Chen J, Deng S Z, Xu N S, Golberg D, Bando Y 2013 Mater. Chem. C 1 3217

    [16]

    Qin Y X, Hu M, Zhang J 2010 Sens. Actuat. B 150 339

    [17]

    Chen C H, Wang S J, Ko R M, Kuo Y C, Uang K M, Chen T M, Liou B W, Tsai H Y 2006 Nanotechnology 17 217

    [18]

    Hu W B, Zhao Y M, Liu Z L, Dunnill C W, Gregory D H, Zhu Y Q 2008 Chem. Mater. 20 5657

    [19]

    Huang R, Zhu J, Yu R 2009 Chin. Phys. B 18 3024

    [20]

    Sun S B, Zhao Y M, Xia Y D, Zou Z D, Min G H, Zhu Y Q 2008 Nanotechnology 19 305709

    [21]

    Li Y F, Zhou Z, Chen Y S, Chen Z F 2009 J. Chem. Phys. 130 204706

    [22]

    Li Z B, Wang X, Jia L C, Chi B 2014 J. Mol. Struct. 1061 160

    [23]

    Zhang M, Shi J J 2014 Chin. Phys. B 23 017301

    [24]

    Ji Y J, Du Y J, Wang M S 2013 Chin. Phys. B 22 117103

    [25]

    Zhang P, Liu Y, Yu H, Han S H, Lu Y B, Lu M S, Cong W Y 2014 Chin. Phys. B 23 026103

    [26]

    Hou Q Y, Dong H Y, Ying C, Ma W 2012 Acta Phys. Sin. 61 167102 (in Chinese) [侯清玉, 董红英, 迎春, 马文 2012 61 167102]

    [27]

    Hou Q Y, Zhao C W, Jin Y J, Guan Y Q, Lin L, Li J J 2010 Acta Phys. Sin. 59 4156 (in Chinese) [侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军 2010 59 4156]

    [28]

    Hariharan V, Parthibavarman M, Sekar C 2011 J. Alloys Compd. 509 4788

    [29]

    Vo T, Williamson A J, Galli G 2006 Phys. Rev. B 74 045116

    [30]

    Jin L, Lou S Y, Kong D G, Li Y C, Du Z L 2006 Acta Phys. Sin. 55 4809 (in Chinese) [靳联, 娄世云, 孔德国, 李藴才, 杜祖亮 2006 55 4809]

    [31]

    Zhou Z, Zhao J J, Chen Y S, Schleyer P V R, Chen Z F 2007 Nanotechnology 18 424023

    [32]

    Wanbayor R, Ruangpornvisuti V 2012 Appl. Surf. Sci. 258 3298

    [33]

    Breedon M, Spencer M J S, Yarovsky I 2010 J. Phys. Chem. C 114 16603

  • [1] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [2] Zhang Shu-Dong, Wang Chuan-Hang, Tang Wei, Sun Yang, Sun Ning-Ze, Sun Zhao-Yu, Xu Hui. Mechanism of 2, 3-difurylmaleic anhydride photochromic molecular switch. Acta Physica Sinica, 2021, 70(16): 163101. doi: 10.7498/aps.70.20202039
    [3] Li Chuan-Gang, Ju Tao, Zhang Li-Guo, Li Yang, Zhang Xuan, Qin Juan, Zhang Bao-Shun, Zhang Ze-Hong. Growth of 4H-SiC recombination-enhancing buffer layer with Ti and N co-doping and improvement of forward voltage stability of PiN diodes. Acta Physica Sinica, 2021, 70(3): 037102. doi: 10.7498/aps.70.20200921
    [4] Feng Qiu-Ju, Shi Bo, Li Yun-Zheng, Wang De-Yu, Gao Chong, Dong Zeng-Jie, Xie Jin-Zhu, Liang Hong-Wei. Fabrication and properties of non-balance electric bridge gas sensor based on a single Sb doped ZnO microwire. Acta Physica Sinica, 2020, 69(3): 038102. doi: 10.7498/aps.69.20191530
    [5] Chen Mei-Na, Zhang Lei, Gao Hui-Ying, Xuan Yan, Ren Jun-Feng, Lin Zi-Jing. DFT+U calculation of Sm3+ and Sr2+ co-doping effect on performance of CeO2-based electrolyte. Acta Physica Sinica, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [6] Song Qing-Gong, Zhao Jun-Pu, Gu Wei-Feng, Zhen Dan-Dan, Guo Yan-Rui, Li Ze-Peng. Ductile and electronic properties of La-doped gamma-TiAl systems based on density functional theory. Acta Physica Sinica, 2017, 66(6): 066103. doi: 10.7498/aps.66.066103
    [7] Zhang Wei-Yi, Hu Ming, Liu Xing, Li Na, Yan Wen-Jun. Synthesis and gas-sensing properties of the silicon nanowires/vanadium oxide nanorods composite. Acta Physica Sinica, 2016, 65(9): 090701. doi: 10.7498/aps.65.090701
    [8] Sun Jian-Ping, Zhou Ke-Liang, Liang Xiao-Dong. Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes. Acta Physica Sinica, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [9] Xing Lan-Jun, Chang Yong-Qin, Shao Chang-Jing, Wang Lin, Long Yi. Room temperature gas sensing property and sensing mechanism of Sn-doped ZnO thin film. Acta Physica Sinica, 2016, 65(9): 097302. doi: 10.7498/aps.65.097302
    [10] Hu Jie, Deng Xiao, Sang Sheng-Bo, Li Peng-Wei, Li Gang, Zhang Wen-Dong. Fabrication and characteristics of ZnO nanowires array gas sensor based on microfluidics. Acta Physica Sinica, 2014, 63(20): 207102. doi: 10.7498/aps.63.207102
    [11] Wang Yan-Li, Su Ke-He, Yan Hong-Xia, Wang Xin. Investigation of C atom doped armchair (n, n) single walled BN nanotubes with density functional theory. Acta Physica Sinica, 2014, 63(4): 046101. doi: 10.7498/aps.63.046101
    [12] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [13] Qin Yu-Xiang, Liu Kai-Xuan, Liu Chang-Yu, Sun Xue-Bin. P-type conductivity and NO2 sensing properties for V-doped W18O49 nanowires at room temperature. Acta Physica Sinica, 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [14] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [15] Li Ming-Yang, Yu Ming-Lang, Su Qing, Liu Xue-Qin, Xie Er-Qing, Zhang Xiao-Qian. Time influence factor of vanadium oxide nanotube on Si substrate and initial gas sensing test. Acta Physica Sinica, 2012, 61(23): 236101. doi: 10.7498/aps.61.236101
    [16] Zhang Jian-Dong, Yang Chun, Chen Yuan-Tao, Zhang Bian-Xia, Shao Wen-Ying. A density functional theory study of absorption behavior of CO on Au-doped single-walled carbon nanotubes. Acta Physica Sinica, 2011, 60(10): 106102. doi: 10.7498/aps.60.106102
    [17] Chen Xuan, Peng Xia, Deng Kai-Ming, Xiao Chuan-Yun, Hu Feng-Lan, Tan Wei-Shi. The magnetism of M13-doped cagelike structure of gold clusters (M = Fe, Ti):density functional calculations. Acta Physica Sinica, 2009, 58(8): 5370-5375. doi: 10.7498/aps.58.5370
    [18] Yang Jian, Wang Ni-Ying, Zhu Dong-Jiu, Chen Xuan, Deng Kai-Ming, Xiao Chuan-Yun. Density functional calculation of the geometric and magnetic properties of MPb10(M=Ti,V,Cr,Cu,Pd) clusters. Acta Physica Sinica, 2009, 58(5): 3112-3117. doi: 10.7498/aps.58.3112
    [19] Sheng Yong, Mao Hua-Ping, Tu Ming-Jing. DFT study on the Mg-doped TinMg (n=1—10) clusters. Acta Physica Sinica, 2008, 57(7): 4153-4158. doi: 10.7498/aps.57.4153
    [20] Shao Jun. Optimal photoluminescence spectrum from Ti-doped ZnTe. Acta Physica Sinica, 2003, 52(7): 1743-1747. doi: 10.7498/aps.52.1743
Metrics
  • Abstract views:  6088
  • PDF Downloads:  866
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2014
  • Accepted Date:  11 June 2014
  • Published Online:  05 October 2014

/

返回文章
返回
Baidu
map