搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单根Sb掺杂ZnO微米线非平衡电桥式气敏传感器的制作与性能

冯秋菊 石博 李昀铮 王德煜 高冲 董增杰 解金珠 梁红伟

引用本文:
Citation:

单根Sb掺杂ZnO微米线非平衡电桥式气敏传感器的制作与性能

冯秋菊, 石博, 李昀铮, 王德煜, 高冲, 董增杰, 解金珠, 梁红伟

Fabrication and properties of non-balance electric bridge gas sensor based on a single Sb doped ZnO microwire

Feng Qiu-Ju, Shi Bo, Li Yun-Zheng, Wang De-Yu, Gao Chong, Dong Zeng-Jie, Xie Jin-Zhu, Liang Hong-Wei
PDF
HTML
导出引用
  • 通过使用化学气相沉积法, 成功制备出超长、大尺寸的Sb掺杂ZnO微米线. 基于非平衡电桥原理, 利用单根Sb掺杂ZnO微米线作为非平衡电桥的一个桥臂, 制作出了可以在室温环境下工作的气敏传感器原型器件. 结果表明: 室温下测得该传感器对20, 50, 100和200 ppm (1 ppm = 10–6)不同浓度的丙酮及乙醇气体的响应-恢复曲线均呈现为矩形形状, 在空气及被测气体中均有稳定的电流值, 并随着探测气体浓度的增大, 器件的响应值也在逐渐增加. 此外, 还发现器件对丙酮气体具有更好的选择性, 当丙酮气体浓度为200 ppm时, 该传感器的响应时间为0.2 s, 恢复时间为0.3 s, 响应度高达243%. 通过与普通电导式气敏传感器对比发现, 采用这种非平衡电桥结构传感器可以明显地提高响应度, 使响应和恢复时间更快. 此外, 还研究了器件的气体探测机理.
    Zinc oxide (ZnO) is a wide direct band gap (3.37 eV) II-VI semiconductor material with a wide range of applications in light emitting devices, solar cells, field emission devices, gas sensors, etc. Over the past decades, metal oxide semiconductors have been investigated extensively for sensing various types of vapors and toxic gases. Among the various metal oxides for gas sensing applications, ZnO is one of the potential materials for high response, stability and sensitivity to volatile organic gases. At present, the ZnO-based gas sensor has a relatively high operating temperature. However, the stability and lifetime of gas sensors operating under high temperature conditions with a long term will be greatly reduced. In addition, the power consumption of gas sensors is also significantly increased. Furthermore, there can exist the potential of explosion when gas sensors are used to detect the flammable gases at high temperature. Therefore, it is necessary to improve the sensing properties and reduce the operating temperature of gas sensors. In this paper, ultra-long, large-sized Sb doped ZnO microwires are successfully prepared by using chemical vapor deposition. The gas sensor is based on the principle of non-balance electric bridge, and a single Sb doped ZnO microwire is used as a bridge arm R4 of non-balance electric bridge to produce a gas sensor that can work at room temperature. The results show that the response-recovery curves of sensors at the acetone and ethanol concentrations of 20 ppm, 50 ppm, 100 ppm and 200 ppm (1 ppm = 10–6) are rectangular at room temperature, and have stable current values in air and measured gas, and the response value of the device gradually increases with gas concentration increasing. Furthermore, the detection of acetone and ethanol gas reveal that the device has better selectivity for acetone gas. The response of the gas sensor to 200 ppm acetone is about 243%, with response and recovery time of 0.2 s and 0.3 s, respectively. Compared with the traditional resistive gas sensor, this non-balanced electric bridge sensor has high response, fast response and recovery time. In addition, the sensing mechanism of the device is also studied.
      通信作者: 冯秋菊, qjfeng@dlut.edu.cn
    • 基金项目: 国家级-国家自然科学基金面上项目(61574026,11405017)
      Corresponding author: Feng Qiu-Ju, qjfeng@dlut.edu.cn
    [1]

    李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武 2018 67 140701Google Scholar

    Li Y, Li J, Chen L L, Lian X X, Zhu J W 2018 Acta Phys. Sin. 67 140701Google Scholar

    [2]

    Yang X, Dong L, Shan C X, Sun J L, Zhang N, Wang S P, Jiang M M, Li B H, Xie X H, Shen D Z 2017 Adv. Mater. 29 1602832Google Scholar

    [3]

    冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢 2014 63 168101Google Scholar

    Feng Q J, Xu R Z, Guo H Y, X K, Li R, Tao P C T, Liang H W, Liu J Y, Mei Y Y 2014 Acta Phys. Sin. 63 168101Google Scholar

    [4]

    Mourad S, Ghoul J E, Omri K, Khirouni K 2019 Chin. Phys. B 28 047701Google Scholar

    [5]

    刘姿, 张恒, 吴昊, 刘昌 2019 68 107301Google Scholar

    Liu Z, Zhang H, Wu H, Liu C 2019 Acta Phys. Sin. 68 107301Google Scholar

    [6]

    Wei A, Wang Z, Pan L H, Li W W, Xiong L, Dong X C, Huang W 2011 Chin. Phys. Lett. 28 080702Google Scholar

    [7]

    胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋 2014 63 207102Google Scholar

    Hu J, Deng X, Sang S B, Li P W, Li G, Zhang W D 2014 Acta Phys. Sin. 63 207102Google Scholar

    [8]

    Liang J, Yang R, Zhu K, Hu M 2018 J. Mater. Sci. Mater. Electron. 29 3780Google Scholar

    [9]

    Shao C, Chang Y, Long Y 2014 Sens. Actuators B 204 666Google Scholar

    [10]

    Kim H J, Lee J H 2014 Sens. Actuators B 192 607Google Scholar

    [11]

    Feng Q J, Shi X C, Xing Y, Li T T, Li F, Pan D Z, Liang H W 2018 J. Alloys Compd. 739 298Google Scholar

    [12]

    Gu F B, You D, Wang Z H, Han D M, Guo G S 2014 Sens. Actuators B 204 342Google Scholar

    [13]

    Zhang P S, Pan G F, Zhang B Q, Zhen J L, Sun Y C 2014 Mater. Res. 17 817Google Scholar

    [14]

    Tian S, Yang F, Zeng D, Xie C 2012 J. Phys. Chem. C 116 10586Google Scholar

    [15]

    Li X W, Wang C, Guo H, Sun P, Liu F, Liang X, Lu G 2015 ACS Appl. Mater. Interfaces 7 17811Google Scholar

    [16]

    Alexiadou M, Kandyla M, Mousdis G, M. Kompitsas 2017 Appl. Phys. A 123 262

    [17]

    Hsueh T J, Hsu C L, Chang S J, Chen I C 2007 Sens. Actuators B 126 473Google Scholar

    [18]

    Wang T, Xu S, Hu N, Hu J, Huang D, Jiang W, Wang S, Wu S, Zhang Y, Yang Z 2018 Sens. Actuators B 255 1006Google Scholar

    [19]

    Moreau W R 1989 Eur. J. Phys. 10 286Google Scholar

    [20]

    Castro H F, Correia V, Pereira N, Costab P, Oliveiraa J, Lanceros-Méndez S L 2018 Addit. Manuf. 20 119Google Scholar

  • 图 1  气体传感器的结构示意图

    Fig. 1.  Schematic image of gas sensor.

    图 2  (a) Sb掺杂ZnO微米线阵列实物照片; (b)单根Sb掺杂ZnO微米线的SEM图

    Fig. 2.  (a) Photograph of Sb doped ZnO microwire arrays; (b) SEM image of the single Sb doped ZnO microwire.

    图 3  单根Sb掺杂ZnO微米线的EDS

    Fig. 3.  EDS for the single Sb doped ZnO microwire.

    图 4  室温下单根Sb掺杂ZnO微米线分别在空气和浓度为200 ppm丙酮及乙醇气体中的I-V特性曲线

    Fig. 4.  The I-V characteristic curves of the single ZnO micronwire for air, acetone (200 ppm) and ethanol (200 ppm) at room temperature.

    图 5  室温条件下传感器在不同浓度丙酮和乙醇气体中的响应和恢复曲线 (a)丙酮; (b)乙醇; (c), (d)室温下传感器对不同浓度丙酮及乙醇气体的响应度曲线

    Fig. 5.  Response and recovery curves of the gas sensor to different concentrations of acetone (a) and (b) ethanol at room temperature; (c), (d) the response of the gas sensor to different concentrations of acetone and ethanol at room temperature.

    图 6  室温下气体传感器对200 ppm被测气体的响应恢复曲线 (a)丙酮; (b)乙醇

    Fig. 6.  Response and recovery curves of gas sensor to 200 ppm acetone (a) and ethanol (b) at room temperature.

    图 7  两种气敏传感器室温下对200 ppm丙酮和乙醇气体的响应和恢复曲线 (a), (b)非平衡电桥式; (c), (d)传统电导式

    Fig. 7.  Response and recovery curves of two gas sensors to 200 ppm acetone and ethanol gases at room temperature: (a), (b) Non-balance electric bridge type; (c), (d) conventional conductance type.

    Baidu
  • [1]

    李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武 2018 67 140701Google Scholar

    Li Y, Li J, Chen L L, Lian X X, Zhu J W 2018 Acta Phys. Sin. 67 140701Google Scholar

    [2]

    Yang X, Dong L, Shan C X, Sun J L, Zhang N, Wang S P, Jiang M M, Li B H, Xie X H, Shen D Z 2017 Adv. Mater. 29 1602832Google Scholar

    [3]

    冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢 2014 63 168101Google Scholar

    Feng Q J, Xu R Z, Guo H Y, X K, Li R, Tao P C T, Liang H W, Liu J Y, Mei Y Y 2014 Acta Phys. Sin. 63 168101Google Scholar

    [4]

    Mourad S, Ghoul J E, Omri K, Khirouni K 2019 Chin. Phys. B 28 047701Google Scholar

    [5]

    刘姿, 张恒, 吴昊, 刘昌 2019 68 107301Google Scholar

    Liu Z, Zhang H, Wu H, Liu C 2019 Acta Phys. Sin. 68 107301Google Scholar

    [6]

    Wei A, Wang Z, Pan L H, Li W W, Xiong L, Dong X C, Huang W 2011 Chin. Phys. Lett. 28 080702Google Scholar

    [7]

    胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋 2014 63 207102Google Scholar

    Hu J, Deng X, Sang S B, Li P W, Li G, Zhang W D 2014 Acta Phys. Sin. 63 207102Google Scholar

    [8]

    Liang J, Yang R, Zhu K, Hu M 2018 J. Mater. Sci. Mater. Electron. 29 3780Google Scholar

    [9]

    Shao C, Chang Y, Long Y 2014 Sens. Actuators B 204 666Google Scholar

    [10]

    Kim H J, Lee J H 2014 Sens. Actuators B 192 607Google Scholar

    [11]

    Feng Q J, Shi X C, Xing Y, Li T T, Li F, Pan D Z, Liang H W 2018 J. Alloys Compd. 739 298Google Scholar

    [12]

    Gu F B, You D, Wang Z H, Han D M, Guo G S 2014 Sens. Actuators B 204 342Google Scholar

    [13]

    Zhang P S, Pan G F, Zhang B Q, Zhen J L, Sun Y C 2014 Mater. Res. 17 817Google Scholar

    [14]

    Tian S, Yang F, Zeng D, Xie C 2012 J. Phys. Chem. C 116 10586Google Scholar

    [15]

    Li X W, Wang C, Guo H, Sun P, Liu F, Liang X, Lu G 2015 ACS Appl. Mater. Interfaces 7 17811Google Scholar

    [16]

    Alexiadou M, Kandyla M, Mousdis G, M. Kompitsas 2017 Appl. Phys. A 123 262

    [17]

    Hsueh T J, Hsu C L, Chang S J, Chen I C 2007 Sens. Actuators B 126 473Google Scholar

    [18]

    Wang T, Xu S, Hu N, Hu J, Huang D, Jiang W, Wang S, Wu S, Zhang Y, Yang Z 2018 Sens. Actuators B 255 1006Google Scholar

    [19]

    Moreau W R 1989 Eur. J. Phys. 10 286Google Scholar

    [20]

    Castro H F, Correia V, Pereira N, Costab P, Oliveiraa J, Lanceros-Méndez S L 2018 Addit. Manuf. 20 119Google Scholar

计量
  • 文章访问数:  8781
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-09
  • 修回日期:  2019-11-06
  • 刊出日期:  2020-02-05

/

返回文章
返回
Baidu
map