Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on the minimization of over-erase phenomenon in Si3N4 trapping layer

Dai Yue-Hua Jin Bo Wang Jia-Yu Chen Zhen Li Ning Jiang Xian-Wei Lu Wen-Juan Li Xiao-Feng

Citation:

First-principles study on the minimization of over-erase phenomenon in Si3N4 trapping layer

Dai Yue-Hua, Jin Bo, Wang Jia-Yu, Chen Zhen, Li Ning, Jiang Xian-Wei, Lu Wen-Juan, Li Xiao-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The first-principles method has been used to explore how to minimize the over-erase phenomenon in charge trapping memory. Over-erase phenomenon originates from the nitrogen vacancy due to its weak localization of charge on Si atoms. Therefore, we develop a defect model for studying Si3N4 supercells. The defect model consists of an N vacancy and a substitutional atom on the Si site. The substitutional atoms can be C, N, and O atoms, respectively. The Si site belongs to the N vacancy. Then, the Bader charge distribution after program/erase operation, the interaction energy and density of states are calculated for the model so as to analyze the effects of the substitutional atoms on the over-erase phenomenon. The obtained results of the Bader charge distribution show that the substitution of O for the 128th Si can minimize the over-erase phenomenon in Si3N4, and the replacement of the 128th Si by C can also reduce the over-erase phenomenon. However, the model represents a weak localization of charge due to the replacement by C, which is not preferable for charge storage. And the results also reveal that the substitution of N for the 128th Si completely fails to reduce the over-erase phenomenon. With regard to the 162th and 196th Si sites, the substitutions of the three atoms for the two sites cannot minimize the over-erase phenomenon. Furthermore, the analysis of the interaction energies indicates that the combination of each of the three atoms with the N vacancy can form stable clusters on the 128th site in the model. In particular, the attractive interaction between O and N vacancy is the weakest of the three so that the injected charge can temporarily break the stability of the O cluster to rearrange the charge distribution, realizing the localization of charge around the O cluster. And then, the results of the density of states designate that subtitutional O atom at the 128th Si atom site produces a deep-level trap in the band gap, which has a powerful ability to localize the charge. The above results suggest that substitution of O for Si is an excellent solution for the minimization of over-erase phenomenon in Si3N4. This work can provide a method for the minimization of over-erase phenomenon in charge trapping memory and also can be helpful to the improvement of charge retention and optimization of memory window in the charge trapping memory.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61376106).
    [1]

    Sandip T, Farhan R, Hussein H, Allan H, Emmanuel F, Kevin C 1996 Appl. Phy. Lett. 68 1377

    [2]

    Kin F K, Chin M L, Ming J C, Ming J T, Tsung S C 2009 Adv. Mater. 21 1695

    [3]

    Lee H Y, Chen P S, Wu T Y, Chen S, Wang C C, Tzeng P J, Tsai M J, Line C 2010 IEEE Electron Dev. Lett. 31 44

    [4]

    Tehrsin S, Chen E, Durlam M, DeHerrera M, Slaughter J M, Shi J, Kerszykowski G 1999 J. Appl. Phys. 85 5822

    [5]

    Bachhofer H, Reisinger H, Bertagnolli E, Philipsborn H V 2001 J. Appl. Phys. 89 2791

    [6]

    Gritsenko V A, Novikov Y N, Shaposhnikov A V, Wong H, Zhidomirov G M 2003 Phys. Solid State 45 2031

    [7]

    Ptersen M, Roizin Y 2006 Appl. Phys. Lett. 89 053511

    [8]

    Tsai C Y, Chin A 2012 IEEE Trans. Electron Devices 59 252

    [9]

    Jin L 2012 Ph.D. Dissertation (Hefei: Anhui University) (in Chinese) [金林 2012 博士学位论文(合肥: 安徽大学)]

    [10]

    Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai Jie, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888

    [11]

    Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102

    [12]

    Hsieh C R, Lai C H, Lin B C, Lou J C, Lin J K, Lai Y L, Lai H L 2007 IEEE Electron Devices and Solid-State Circuits 629

    [13]

    Wang X G, Liu J, Bai W P, Kong D L 2004 IEEE Trans. Electron Devices 51 597

    [14]

    Chen F H, Pan T M, Chiu F C 2011 IEEE Trans. Electron Devices 58 3847

    [15]

    Swift C T, Chindalore G L, Harber K, Harp T S, Hoefler A, Hong C M, Ingersoll P A, Li C B, Prinz E J, Yater J A 2002 IEDM Tech. Dig. 927

    [16]

    Rosmeulen M, Sleeckx E, De Meyer K 2002 IEDM Tech. Dig. 189

    [17]

    Ishiduki M, Fukuzumi Y, Katsumata R, Kito M, Kido M, Tanaka H, Komori Y, Nagata Y, Fujiwara T, Maeda Y, Mikajiri Y, Oota S, Honda M, Iwata Y, Kirisawa R, Aochi H, Nitayama A 2009 IEDM Tech. Dig. 625

    [18]

    Luo J, Lu J L, Zhao H P, Dai Y H, Liu Q, Yang J, Jiang X W, Xu H F 2014 J. Semicond. 35 014004

    [19]

    Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Electron Devices 51 1143

    [20]

    Wang J Y, Dai Y H, Zhao Y Y, Xu J B, Yang F, Dai G Z, Yang J 2014 Acta Phys. Sin. 63 203101 (in Chinese) [汪家余, 代月花, 赵远洋, 徐建彬, 杨菲, 代广珍, 杨金 2014 63 203101]

    [21]

    Zhao Q, Zhou M X, Zhang W, Liu Q, Li X F, Liu M, Dai Y H 2013 J. Semicond. 34 032001

    [22]

    Tang W, Sanville E, Henkelman G 2009 J. Phys.:Condens. Matter 21 084204

    [23]

    Sanville E, Kenny S D, Smith R, Henkelman G 2007 J. Comput. Chem. 28 899

    [24]

    Hou Z F, Gong X G, Li Q 2009 J. Appl. Phys. 106 014104

    [25]

    Deng S H, Jiang Z L 2014 Acta Phys. Sin. 63 077101 (in Chinese) [邓胜华, 姜志林 2014 63 077101]

    [26]

    Tang F L, Liu R, Xue H T, Lu W J, Feng Y D, Rui Z Y, Huang M 2014 Chin. Phys. B 23 077301

    [27]

    Zheng S W, He M, Li S T, Zhang Y 2014 Chin. Phys. B 23 087101

    [28]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [29]

    John P P, Kieron B, Matthias E 1996 Phys. Rev. Lett. 77 3865

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

  • [1]

    Sandip T, Farhan R, Hussein H, Allan H, Emmanuel F, Kevin C 1996 Appl. Phy. Lett. 68 1377

    [2]

    Kin F K, Chin M L, Ming J C, Ming J T, Tsung S C 2009 Adv. Mater. 21 1695

    [3]

    Lee H Y, Chen P S, Wu T Y, Chen S, Wang C C, Tzeng P J, Tsai M J, Line C 2010 IEEE Electron Dev. Lett. 31 44

    [4]

    Tehrsin S, Chen E, Durlam M, DeHerrera M, Slaughter J M, Shi J, Kerszykowski G 1999 J. Appl. Phys. 85 5822

    [5]

    Bachhofer H, Reisinger H, Bertagnolli E, Philipsborn H V 2001 J. Appl. Phys. 89 2791

    [6]

    Gritsenko V A, Novikov Y N, Shaposhnikov A V, Wong H, Zhidomirov G M 2003 Phys. Solid State 45 2031

    [7]

    Ptersen M, Roizin Y 2006 Appl. Phys. Lett. 89 053511

    [8]

    Tsai C Y, Chin A 2012 IEEE Trans. Electron Devices 59 252

    [9]

    Jin L 2012 Ph.D. Dissertation (Hefei: Anhui University) (in Chinese) [金林 2012 博士学位论文(合肥: 安徽大学)]

    [10]

    Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai Jie, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888

    [11]

    Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102

    [12]

    Hsieh C R, Lai C H, Lin B C, Lou J C, Lin J K, Lai Y L, Lai H L 2007 IEEE Electron Devices and Solid-State Circuits 629

    [13]

    Wang X G, Liu J, Bai W P, Kong D L 2004 IEEE Trans. Electron Devices 51 597

    [14]

    Chen F H, Pan T M, Chiu F C 2011 IEEE Trans. Electron Devices 58 3847

    [15]

    Swift C T, Chindalore G L, Harber K, Harp T S, Hoefler A, Hong C M, Ingersoll P A, Li C B, Prinz E J, Yater J A 2002 IEDM Tech. Dig. 927

    [16]

    Rosmeulen M, Sleeckx E, De Meyer K 2002 IEDM Tech. Dig. 189

    [17]

    Ishiduki M, Fukuzumi Y, Katsumata R, Kito M, Kido M, Tanaka H, Komori Y, Nagata Y, Fujiwara T, Maeda Y, Mikajiri Y, Oota S, Honda M, Iwata Y, Kirisawa R, Aochi H, Nitayama A 2009 IEDM Tech. Dig. 625

    [18]

    Luo J, Lu J L, Zhao H P, Dai Y H, Liu Q, Yang J, Jiang X W, Xu H F 2014 J. Semicond. 35 014004

    [19]

    Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Electron Devices 51 1143

    [20]

    Wang J Y, Dai Y H, Zhao Y Y, Xu J B, Yang F, Dai G Z, Yang J 2014 Acta Phys. Sin. 63 203101 (in Chinese) [汪家余, 代月花, 赵远洋, 徐建彬, 杨菲, 代广珍, 杨金 2014 63 203101]

    [21]

    Zhao Q, Zhou M X, Zhang W, Liu Q, Li X F, Liu M, Dai Y H 2013 J. Semicond. 34 032001

    [22]

    Tang W, Sanville E, Henkelman G 2009 J. Phys.:Condens. Matter 21 084204

    [23]

    Sanville E, Kenny S D, Smith R, Henkelman G 2007 J. Comput. Chem. 28 899

    [24]

    Hou Z F, Gong X G, Li Q 2009 J. Appl. Phys. 106 014104

    [25]

    Deng S H, Jiang Z L 2014 Acta Phys. Sin. 63 077101 (in Chinese) [邓胜华, 姜志林 2014 63 077101]

    [26]

    Tang F L, Liu R, Xue H T, Lu W J, Feng Y D, Rui Z Y, Huang M 2014 Chin. Phys. B 23 077301

    [27]

    Zheng S W, He M, Li S T, Zhang Y 2014 Chin. Phys. B 23 087101

    [28]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [29]

    John P P, Kieron B, Matthias E 1996 Phys. Rev. Lett. 77 3865

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

  • [1] Liu Zhi-Cheng, Zhou Jie, Chen Fan, Peng Biao, Peng Wen-Yi, Zhang Ai-Sheng, Deng Xiao-Hua, Luo Xian-Zhi, Liu Ri-Xin, Liu De-Wu, Huang Yu, Yan Jun. First-principles study of influence of Si on γ phase in Inconel 718 alloy. Acta Physica Sinica, 2023, 72(18): 186301. doi: 10.7498/aps.72.20230583
    [2] Fu Zheng-Hong, Li Ting, Shan Mei-Le, Guo Kang, Gou Guo-Qing. Effect of H on elastic properties of Mg2Si by the first principles calculation. Acta Physica Sinica, 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [3] Hou Qing-Yu, Li Yong, Zhao Chun-Wang. First-principles study of Al-doped and vacancy on the magnetism of ZnO. Acta Physica Sinica, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [4] Zhou Ren-Di, Huang Xue-Fei, Qi Zhi-Jian, Huang Wei-Gang. Preparation and luminescent properties of Ca2Si(O4-xNx):Eu2+ green-emitting phosphors. Acta Physica Sinica, 2014, 63(19): 197801. doi: 10.7498/aps.63.197801
    [5] Wang Jia-Yu, Dai Yue-Hua, Zhao Yuan-Yang, Xu Jian-Bin, Yang Fei, Dai Guang-Zhen, Yang Jin. Research on charge trapping memory’s over erase. Acta Physica Sinica, 2014, 63(20): 203101. doi: 10.7498/aps.63.203101
    [6] Li Yu-Bo, Wang Xiao, Dai Ting-Ge, Yuan Guang-Zhong, Yang Hang-Sheng. First-principle study of vacancy-induced cubic boron nitride electronic structure and optical propertiy changes. Acta Physica Sinica, 2013, 62(7): 074201. doi: 10.7498/aps.62.074201
    [7] Yao Guang-Rui, Fan Guang-Han, Zheng Shu-Wen, Ma Jia-Hong, Chen Jun, Zhang Yong, Li Shu-Ti, Su Shi-Chen, Zhang Tao. First-principles study of p-type ZnO by Te-N codoping. Acta Physica Sinica, 2012, 61(17): 176105. doi: 10.7498/aps.61.176105
    [8] Ru Qiang, Li Yan-Ling, Hu She-Jun, Peng Wei, Zhang Zhi-Wen. The investigation of lithium insertion mechanism for Sn3InSb4 alloy based on first-principle calculation. Acta Physica Sinica, 2012, 61(3): 038210. doi: 10.7498/aps.61.038210
    [9] Yu Ben-Hai, Chen Dong. First-principles study on the electronic structure and phase transition of α-, β- and γ-Si3N4. Acta Physica Sinica, 2012, 61(19): 197102. doi: 10.7498/aps.61.197102
    [10] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [11] Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng. First-principles calculation and experimental study of Si-doped β-Ga2O3. Acta Physica Sinica, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [12] Ma Guo-Jia, Zhu Jia-Qi, Gong Shui-Li, Gao Wei. First principles studies of nitrogen doped tetrahedral amorphous carbon. Acta Physica Sinica, 2011, 60(2): 027104. doi: 10.7498/aps.60.027104
    [13] Li Qi, Fan Guang-Han, Xiong Wei-Ping, Zhang Yong. First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [14] Li Shi-Na, Liu Yong. First-principles calculation of elastic and thermodynamic properties of copper nitride. Acta Physica Sinica, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [15] Zhu Guo-Liang, Shu Da, Dai Yong-Bing, Wang Jun, Sun Bao-De. First principles study on substitution behaviour of Si in TiAl3. Acta Physica Sinica, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [16] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [17] Yang Min, Wang Liu-Ding, Chen Guo-Dong, An Bo, Wang Yi-Jun, Liu Guang-Qing. First-principles study on field emission of C-doped capped single-walled BNNT. Acta Physica Sinica, 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [18] Chen Kun, Fan Guang-Han, Zhang Yong, Ding Shao-Feng. First principles study of In-N codoped ZnO. Acta Physica Sinica, 2008, 57(5): 3138-3147. doi: 10.7498/aps.57.3138
    [19] Kong Chao, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Huang Jin-Ying, Yan Guang, Li Jun-Ming. Solid state cathodoluminescence of poly (2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene in devices with Si3N4 as the electronic accelerating layer. Acta Physica Sinica, 2008, 57(12): 7891-7895. doi: 10.7498/aps.57.7891
    [20] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
Metrics
  • Abstract views:  5297
  • PDF Downloads:  218
  • Cited By: 0
Publishing process
  • Received Date:  06 January 2015
  • Accepted Date:  08 March 2015
  • Published Online:  05 July 2015

/

返回文章
返回
Baidu
map