-
实验通过朗缪尔探针辅助激光诱导解离技术对27.12 MHz驱动的不同含氧量条件下容性耦合Ar等离子体进行了诊断研究. 通过质量流量计改变通入Ar与O2的流量以得到不同含氧量的等离子体. 结果表明, 由于氧气的分解吸附反应需要消耗电子, 致使朗缪尔探针测得的电子能量概率函数(EEPF)的中能部分随着含氧量的上升而下降. 射频输入功率增加时电子密度的上升引起了电子-电子碰撞热化, 从而使EEPF由Druyvesteyn分布向麦克斯韦分布转变. 在功率电极附近, 由于鞘层边界附近的电子氧气分子碰撞时的分解吸附反应使得鞘层区附近的负离子密度较高. 另外, 负离子密度沿着轴向呈现勺型分布的特征. 这主要是由于负离子在双极电场作用下向等离子体放电中心扩散的过程中所存在的负离子产生与损失的反应过程导致.The capacitively coupled Ar plasma containing oxygen, driven by a radio frequency of 27.12 MHz, is investigated by laser-induced photo-detachment technique assisted with a Langmuir probe. The plasmas with different amounts of oxygen are obtained by changing the flow of Ar and oxygen, each of which is controlled by a mass flow controller. The axial distribution of plasma characteristic can be measured by changing the relative axial position of the Langmuir probe between the parallel electrodes. The electron density and electron temperature are calculated from the current-voltage curve measured by the scanning Langmuir probe, and the electronegativity is obtained from the current curves of the probe with the laser-induced photo-detachment technique. The negative ion density can be calculated from the electron density and the electronegativity. It is shown that with oxygen flow rate increasing, the dissociative attachment of oxygen molecules with electrons will consume the electrons with the middle energy in the electron energy probability function (EEPF) measured by Langmuir probe. The EEPF evolves from Druyvesteyn to Maxwellian distribution due to the thermalization by the e-e interaction with applied power increasing. It is worth mentioning that a depression in the EEPF curve will appear when discharging high-pressure Ar gas containing oxygen. This depression can also be caused by the dissociative attachment of oxygen molecules with electrons where the threshold energy is around 4.5 eV. The axial profile of the electron density is calculated from the EEPF changing from a linear rise in pure Ar plasma to a flater phase of the distribution due to the negative ions such as oxygen introduced into the plasma. The electron temperature changes a little at different axial positions. The rise of negative ion density nearby the sheath of powered electrode is due to the dissociative attachment caused by the collision of oxygen molecules with energetic electrons. In addition, the axial distribution of electronegativity takes on a shape of spoon, which results from the consequence of generation and loss of negative ions in the process of the ambipolar-electric-field-driven diffusion to the plasma center.
-
Keywords:
- laser induced photo-detachment /
- Langmuir probe /
- electronegative plasma /
- electronegativity
[1] Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Progressing (New York: Wiley) pp1−5
[2] Levitskii S M 1957 Sov. Phys. Tech. Phys. 2 887
[3] Godyak V A, Khanneh A S 1986 IEEE Trans. Plasma Sci. 14 112
Google Scholar
[4] Lieberman M A, Godyak V A 1998 IEEE Trans. Plasma Sci. 26 955
Google Scholar
[5] Aliev Y M, Kaganovich I D, Schluter H 1997 Phys. Plasmas. 4 2413
Google Scholar
[6] Kaganovich I D 2002 Phys. Rev. Lett. 89 265006
Google Scholar
[7] Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002
Google Scholar
[8] Liu Y X, Zhang Q Z, Jiang W, Jiang X Z, Lu W Q, Wang Y N 2012 Plasma Sources Sci. Technol. 21 035010
Google Scholar
[9] Turner M M 1995 Phys. Rev. Lett. 75 1312
Google Scholar
[10] Schulze J, Donko Z, Lafleur T, Wilczek S, Brinkmann R P 2018 Plasma Sources Sci. Technol. 27 055010
Google Scholar
[11] Tsendin L D 1989 Sov. Phys. Tech. Phys. 34 11
[12] Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J, Donko Z 2011 Phys. Rev. Lett. 107 275001
Google Scholar
[13] Schulze J, Donko Z, Derzsi A, Korolov I, Schuengel E 2015 Plasma Sources Sci. Technol. 24 015019
Google Scholar
[14] Liu Y X, Schüngel E, Korolov I, Donkó Z, Wang Y N, Schulze J 2016 Phys. Rev. Lett. 116 255002
Google Scholar
[15] Liu Y X, Korolov I, Schüngel E, Wang Y N, Donkó Z, Schulze J 2017 Phys. Plasma. 24 073512
Google Scholar
[16] Irving S 1968 Proc. Kodak Photoresist Seminar (Rochester, New York: Eastman, Kodak) pp26−9
[17] Chashmejahanbin M R, Salimi A and Ershad Langroudi A 2014 Int. J. Adhes. Adhes. 49 44
Google Scholar
[18] Vesel A, Mozetic M 2017 J. Phys. D: Appl. Phys. 50 293001
Google Scholar
[19] Kawai Y, Konishi N, Watanabe J, Ohmi T 1994 Appl. Phys. Lett. 64 2223
Google Scholar
[20] Hess D W 1999 IBM J. Res. Dev. 43 127
Google Scholar
[21] Gudmundsson J T, Ventéjou B 2015 J. Appl. Phys. 118 153302
Google Scholar
[22] Gudmundsson J T, Proto A 2019 Plasma Sources Sci. Technol. 28 045012
Google Scholar
[23] Gudmundsson J T, Snorrason D I 2017 J. Appl. Phys. 122 193302
Google Scholar
[24] Gudmundsson J T, Snorrason D Hannesdottir H 2018 Plasma Sources Sci. Technol. 27 025009
Google Scholar
[25] Gudmundsson J T, Lieberman M A 2015 Plasma Sources Sci. Technol. 24 035016
Google Scholar
[26] Wegner T, Kullig C, Meichsner J 2015 Contrib. Plasma Phys. 55 728736
Google Scholar
[27] Liu Y X, Zhang Q Z, Liu J, Song Y H, Bogaerts A, Wang Y N 2012 Appl. Phys. Lett. 101 114101
Google Scholar
[28] You K H, Schulze J, Derzsi A, Donk Z, Yeom H J, Kim J H, Seong D J, Lee H C 2019 Phys. Plasmas 26 013503
Google Scholar
[29] Kechkar S, Swift P, Kelly S, Kumar S, Daniels S Turner M 2017 Plasma Sources Sci. Technol. 26 065009
Google Scholar
[30] Bacal M, Hamilton G W 1979 Phys. Rev. Lett. 42 1538
Google Scholar
[31] Devynck P, Auvray J, Bacal M, Berlemont P, Brunetear J, Leroy R, Stern R A 1989 Rev. Sci. Instrum. 60 2873
Google Scholar
[32] Balgiiti-Sube F E, Baksht F G, Bacal M 1996 Rev. Sci. Instrum. 67 2221
Google Scholar
[33] Nikitin A G, Balghiti F Ei, Bacal M 1996 Plasma Sources Sci. Technol. 5 37
Google Scholar
[34] Hamabe M, Oka Y, Tsumori O, Kuroda T, Bacal M 1998 Rev. Sci. Instrum. 69 1298
Google Scholar
[35] Nishiura M, Sasao M, Matsumoto Y, Hamabe M, Wada M, Yamaoka H, Bacal M 2002 Rev. Sci. Instrum. 73 973
Google Scholar
[36] Bryant P M, Bradley J W 2013 Plasma Sources Sci. Technol. 22 015014
Google Scholar
[37] You S D, Dodd R, Edwards A, Bradley J W 2010 J. Phys. D: Appl. Phys. 43 505205
Google Scholar
[38] Dodd R, You S D, Bryant P M, Bradley J W 2010 Plasma Sources Sci. Technol. 19 015021
Google Scholar
[39] Scribbins S, Bowes M, Bradley J W 2013 J. Phys. D: Appl. Phys. 46 045203
Google Scholar
[40] Bowes M, Bradley J W 2014 J. Phys. D: Appl. Phys. 47 265202
Google Scholar
[41] Oudini N, Sirse N, Taccogna F, Ellingboe A R, Bendib A 2016 Appl. Phys. Lett. 109 124101
Google Scholar
[42] Oudini N, Sirse N, Benallal R, Taccogna F, Anesland A, Bendib A, Ellingboe A R 2015 Phys. Plasmas 22 073509
Google Scholar
[43] Oudini N, Taccogna F, Bendib A, Anesland A 2014 Phys. Plasmas 21 063515
Google Scholar
[44] Conway J, Sirse N, Karkari S K, Turner M M 2010 Plasma Sources Sci. Technol. 19 065002
Google Scholar
[45] Sirse N, Karkari S K, Mujawar M A, Conway J, Turner M M 2011 Plasma Sources Sci. Technol. 20 055003
Google Scholar
[46] Sirse N, Oudini O, Bendib A, Ellingboe A R 2016 Plasma Sources Sci. Technol. 25 04LT01
Google Scholar
[47] Kullig C, Dittmann K, Meichsner J 2010 Plasma Sources Sci. Technol. 19 065011
Google Scholar
[48] Kullig C, Dittmann K, Meichsner J 2012 Phys. Plasmas 19 073517
Google Scholar
[49] Dittmann K, Kullig C, Meichsner J 2012 Plasma Phys. Controlled Fusion 54 124038
Google Scholar
[50] Kullig C, Dittmann K, Wegner T, Sheykin I, Matyash K, Loffhagen D, Schnerder R, Meichsner J 2012 Contrib. Plasma Phys. 52 836
Google Scholar
[51] Kullig C, Wegner Th, Meichsner J 2015 Phys. Plasmas 22 043515
Google Scholar
[52] Zhao Y F, Zhou Y, Ma X P, Cao L Y, Zheng F G, Xin Y 2019 Phys. Plasmas 26 033502
Google Scholar
[53] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜 2017 66 185202
Google Scholar
Yang Y, Tang C S, Zhao Y F, Y Y Q, Xin Y 2017 Acta Phys. Sin. 66 185202
Google Scholar
[54] Gudmundsson J T, Kouznetsov I G, Patel K K, Lieberman M A 2001 J. Phys. D: Appl. Phys. 34 1100
Google Scholar
[55] Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399
Google Scholar
[56] Godyak A, Piejak R B 1990 Phys. Rev. Lett. 65 996
Google Scholar
[57] Trunec D, Spanel P, Smith D 2003 Chem. Phys. Lett. 372 728
Google Scholar
[58] Itikawa Y 2009 J. Phys. Chem. Ref. Data. 38 1
Google Scholar
[59] 迈克尔·A·力伯曼, 阿伦·J·里登伯格 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第554页
Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Processing (Beijing: Science Press) p554 (in Chinese)
[60] 王涛, 王俊, 唐成双, 杨郁, 辛煜 2017 核聚变与等离子体物理 37 1
Google Scholar
Wang T, Wang J, Tang C S, Yang Y, Xin Y 2017 Nucl. Fusion Plasma Phys. 37 1
Google Scholar
[61] Lee S H, Iza F, Lee J K 2006 Phys. Plasmas 13 057102
Google Scholar
-
图 4 不同气压和功率条件下极板中心处EEPF随含氧量的变化情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W
Fig. 4. The dependence of EEPF on the content of O2 for various discharge pressures and powers at z = 0 mm: (a) 2 Pa-50 W;(b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.
图 5 不同气压和功率条件下电子密度随含氧量的轴向分布情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W
Fig. 5. The axial distribution of electron density on the content of O2 for various discharge pressures and powers: (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.
图 6 不同气压和功率条件下电子温度随含氧量的轴向分布情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-15 0 W; (f) 12 Pa-150 W
Fig. 6. The axial distribution of electron temperature on the content of O2 for various discharge pressures and powers: (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.
图 7 不同气压和功率条件下电负度随含氧量的轴向分布情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W
Fig. 7. The axial distribution of the electronegativity on the content of O2 for various discharge pressures and powers: (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.
图 8 不同气压和功率条件下负离子密度随含氧量的轴向分布情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W
Fig. 8. The axial distribution of negative ion density on the content of O2 for various discharge pressures and powers: (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.
-
[1] Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Progressing (New York: Wiley) pp1−5
[2] Levitskii S M 1957 Sov. Phys. Tech. Phys. 2 887
[3] Godyak V A, Khanneh A S 1986 IEEE Trans. Plasma Sci. 14 112
Google Scholar
[4] Lieberman M A, Godyak V A 1998 IEEE Trans. Plasma Sci. 26 955
Google Scholar
[5] Aliev Y M, Kaganovich I D, Schluter H 1997 Phys. Plasmas. 4 2413
Google Scholar
[6] Kaganovich I D 2002 Phys. Rev. Lett. 89 265006
Google Scholar
[7] Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002
Google Scholar
[8] Liu Y X, Zhang Q Z, Jiang W, Jiang X Z, Lu W Q, Wang Y N 2012 Plasma Sources Sci. Technol. 21 035010
Google Scholar
[9] Turner M M 1995 Phys. Rev. Lett. 75 1312
Google Scholar
[10] Schulze J, Donko Z, Lafleur T, Wilczek S, Brinkmann R P 2018 Plasma Sources Sci. Technol. 27 055010
Google Scholar
[11] Tsendin L D 1989 Sov. Phys. Tech. Phys. 34 11
[12] Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J, Donko Z 2011 Phys. Rev. Lett. 107 275001
Google Scholar
[13] Schulze J, Donko Z, Derzsi A, Korolov I, Schuengel E 2015 Plasma Sources Sci. Technol. 24 015019
Google Scholar
[14] Liu Y X, Schüngel E, Korolov I, Donkó Z, Wang Y N, Schulze J 2016 Phys. Rev. Lett. 116 255002
Google Scholar
[15] Liu Y X, Korolov I, Schüngel E, Wang Y N, Donkó Z, Schulze J 2017 Phys. Plasma. 24 073512
Google Scholar
[16] Irving S 1968 Proc. Kodak Photoresist Seminar (Rochester, New York: Eastman, Kodak) pp26−9
[17] Chashmejahanbin M R, Salimi A and Ershad Langroudi A 2014 Int. J. Adhes. Adhes. 49 44
Google Scholar
[18] Vesel A, Mozetic M 2017 J. Phys. D: Appl. Phys. 50 293001
Google Scholar
[19] Kawai Y, Konishi N, Watanabe J, Ohmi T 1994 Appl. Phys. Lett. 64 2223
Google Scholar
[20] Hess D W 1999 IBM J. Res. Dev. 43 127
Google Scholar
[21] Gudmundsson J T, Ventéjou B 2015 J. Appl. Phys. 118 153302
Google Scholar
[22] Gudmundsson J T, Proto A 2019 Plasma Sources Sci. Technol. 28 045012
Google Scholar
[23] Gudmundsson J T, Snorrason D I 2017 J. Appl. Phys. 122 193302
Google Scholar
[24] Gudmundsson J T, Snorrason D Hannesdottir H 2018 Plasma Sources Sci. Technol. 27 025009
Google Scholar
[25] Gudmundsson J T, Lieberman M A 2015 Plasma Sources Sci. Technol. 24 035016
Google Scholar
[26] Wegner T, Kullig C, Meichsner J 2015 Contrib. Plasma Phys. 55 728736
Google Scholar
[27] Liu Y X, Zhang Q Z, Liu J, Song Y H, Bogaerts A, Wang Y N 2012 Appl. Phys. Lett. 101 114101
Google Scholar
[28] You K H, Schulze J, Derzsi A, Donk Z, Yeom H J, Kim J H, Seong D J, Lee H C 2019 Phys. Plasmas 26 013503
Google Scholar
[29] Kechkar S, Swift P, Kelly S, Kumar S, Daniels S Turner M 2017 Plasma Sources Sci. Technol. 26 065009
Google Scholar
[30] Bacal M, Hamilton G W 1979 Phys. Rev. Lett. 42 1538
Google Scholar
[31] Devynck P, Auvray J, Bacal M, Berlemont P, Brunetear J, Leroy R, Stern R A 1989 Rev. Sci. Instrum. 60 2873
Google Scholar
[32] Balgiiti-Sube F E, Baksht F G, Bacal M 1996 Rev. Sci. Instrum. 67 2221
Google Scholar
[33] Nikitin A G, Balghiti F Ei, Bacal M 1996 Plasma Sources Sci. Technol. 5 37
Google Scholar
[34] Hamabe M, Oka Y, Tsumori O, Kuroda T, Bacal M 1998 Rev. Sci. Instrum. 69 1298
Google Scholar
[35] Nishiura M, Sasao M, Matsumoto Y, Hamabe M, Wada M, Yamaoka H, Bacal M 2002 Rev. Sci. Instrum. 73 973
Google Scholar
[36] Bryant P M, Bradley J W 2013 Plasma Sources Sci. Technol. 22 015014
Google Scholar
[37] You S D, Dodd R, Edwards A, Bradley J W 2010 J. Phys. D: Appl. Phys. 43 505205
Google Scholar
[38] Dodd R, You S D, Bryant P M, Bradley J W 2010 Plasma Sources Sci. Technol. 19 015021
Google Scholar
[39] Scribbins S, Bowes M, Bradley J W 2013 J. Phys. D: Appl. Phys. 46 045203
Google Scholar
[40] Bowes M, Bradley J W 2014 J. Phys. D: Appl. Phys. 47 265202
Google Scholar
[41] Oudini N, Sirse N, Taccogna F, Ellingboe A R, Bendib A 2016 Appl. Phys. Lett. 109 124101
Google Scholar
[42] Oudini N, Sirse N, Benallal R, Taccogna F, Anesland A, Bendib A, Ellingboe A R 2015 Phys. Plasmas 22 073509
Google Scholar
[43] Oudini N, Taccogna F, Bendib A, Anesland A 2014 Phys. Plasmas 21 063515
Google Scholar
[44] Conway J, Sirse N, Karkari S K, Turner M M 2010 Plasma Sources Sci. Technol. 19 065002
Google Scholar
[45] Sirse N, Karkari S K, Mujawar M A, Conway J, Turner M M 2011 Plasma Sources Sci. Technol. 20 055003
Google Scholar
[46] Sirse N, Oudini O, Bendib A, Ellingboe A R 2016 Plasma Sources Sci. Technol. 25 04LT01
Google Scholar
[47] Kullig C, Dittmann K, Meichsner J 2010 Plasma Sources Sci. Technol. 19 065011
Google Scholar
[48] Kullig C, Dittmann K, Meichsner J 2012 Phys. Plasmas 19 073517
Google Scholar
[49] Dittmann K, Kullig C, Meichsner J 2012 Plasma Phys. Controlled Fusion 54 124038
Google Scholar
[50] Kullig C, Dittmann K, Wegner T, Sheykin I, Matyash K, Loffhagen D, Schnerder R, Meichsner J 2012 Contrib. Plasma Phys. 52 836
Google Scholar
[51] Kullig C, Wegner Th, Meichsner J 2015 Phys. Plasmas 22 043515
Google Scholar
[52] Zhao Y F, Zhou Y, Ma X P, Cao L Y, Zheng F G, Xin Y 2019 Phys. Plasmas 26 033502
Google Scholar
[53] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜 2017 66 185202
Google Scholar
Yang Y, Tang C S, Zhao Y F, Y Y Q, Xin Y 2017 Acta Phys. Sin. 66 185202
Google Scholar
[54] Gudmundsson J T, Kouznetsov I G, Patel K K, Lieberman M A 2001 J. Phys. D: Appl. Phys. 34 1100
Google Scholar
[55] Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399
Google Scholar
[56] Godyak A, Piejak R B 1990 Phys. Rev. Lett. 65 996
Google Scholar
[57] Trunec D, Spanel P, Smith D 2003 Chem. Phys. Lett. 372 728
Google Scholar
[58] Itikawa Y 2009 J. Phys. Chem. Ref. Data. 38 1
Google Scholar
[59] 迈克尔·A·力伯曼, 阿伦·J·里登伯格 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第554页
Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Processing (Beijing: Science Press) p554 (in Chinese)
[60] 王涛, 王俊, 唐成双, 杨郁, 辛煜 2017 核聚变与等离子体物理 37 1
Google Scholar
Wang T, Wang J, Tang C S, Yang Y, Xin Y 2017 Nucl. Fusion Plasma Phys. 37 1
Google Scholar
[61] Lee S H, Iza F, Lee J K 2006 Phys. Plasmas 13 057102
Google Scholar
计量
- 文章访问数: 4964
- PDF下载量: 73
- 被引次数: 0