-
By solving the Schrödinger equation and the Poisson equation self-consistently, we have calculated the electronic structure for the Si-uniformally-doped GaAs/AlGaAs quantum well system at T=273 K and B=25 T in the effective mass approximation. We also studied the influence of the temperature and the external magnetic field on the subband energies, eigen-envelope functions, self-consistent potential, density distribution of the electrons, and the Fermi energy. It is found that at the given magnetic field B≠0, with the increase of temperature, the subband energies increase monotonically, the Fermi energy decreases monotonically, the width of the self-consistent potential well decreases, the depth of the well increases, the distribution of the electron density becomes wider, and the peak value is reduced. At the given temperature, with the increase of the strength of the magnetic field, the subband energies and Fermi energy increase monotonically, the depth of the self-consistent potential well is reduced, the peak of the electron density distribution becomes higher, and concentrated around the center of the well.
-
Keywords:
- doping /
- quantum well /
- magnetic field /
- electronic structure
[1] Zhang Y, Gu S L, Ye J D, Huang S M, Gu R, Chen B, Zhu S M, Zheng Y D 2013 Acta Phys. Sin. 62 150202 (in Chinese) [张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有抖 2013 62 150202]
[2] Dingle R, Stormer H L, Gossard A C 1978 Appl. Phys. Lett. 33 665
[3] Rauch C, Strasser G, Unterrainer K, Boxleitner W, Gornik E 1998 Phys. Rev. Lett. 81 3495
[4] Chandhuri S 1983 Phys. Rev. B 28 4480
[5] Yang Y, Fedorov G, Barbara P 2013 Phys. Rev. B 87 045403
[6] Wolf G V, Chuburin Y P 2012 Physica E-Low Dimensional System and Nanostructures 44 2063
[7] Turton R J, Jaros M 1989 Appl. Phys. Lett. 54 1986
[8] Ahn D, Chuang S L 1987 Phys. Rev. B 35 4149
[9] Noda S, Uemura T, Yamashita T, Sasaki A 1990 J. Appl. Phys. 68 6529
[10] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553
[11] Ruden P, Dohler G H 1983 Phys. Rev. B 27 3538
[12] Gaggero-Sager L M, Naumis G G, Munoz-Hernandez M A, Palma-Montiel V 2010 Physica B 405 4267
[13] Miller R C 1984 J. Appl. Phys. 56 1136
[14] Gaggero-Sager L M, Perez-Alvarez R 1996 Phys. Stat. Sol. (b) 197 105
[15] Zhang H F, Du P Y, Wong W J, Han G R 2005 Acta Phys. Sin. 54 5329 (in Chinese) [张海芳, 杜丕一, 翁文剑, 韩高荣 2005 54 5329]
[16] Chang C Y, Lin W, Hsu W C, Wu T S, Chang S Z, Wang C 1991 Jpn. J. Appl. Phys. 30 1158
[17] Dohler G H, Kunzel H, Olego D 1981 Phys. Rev. Lett. 47 864
[18] Hai G Q, Studart N, Peeters F M 1995 Phys. Rev. B 52 11273
[19] Schubert E F, Ullrich B, Harris T D, Cunningham J E 1988 Phys. Rev. B 38 8305
[20] Yue S L, Tang C C, Huang Y 2005 Physics 34 791(in Chinese) [岳双林, Tang C C, 黄阳 2005 物理 34 791]
[21] Zhang L, Lin F Y, Hu H F 2001 Acta Phys. Sin. 50 1378 (in Chinese) [张龙, 林凤英, 胡和方 2001 50 1378]
[22] Ozturk E 2009 Superlattices and Microstructures 46 752
[23] Peter A John 2010 Superlattices and Microstructures 47 442
[24] Fanyao Qu, Fonseca A L A, Nunes A O C 1998 Superlattices and Microstructures 23 1005
[25] Sari H, Kasapoglu E, Sokmen I, Balkan N 2003 Semicond. Sci. Technol. 18 470
[26] Niculescu E, Burileanu L, Radu A 2008 Superlattices and Microstructures 44 173
[27] Yang Shuangbo 2013 Acta Phys. Sin. 62 157301 (in Chinese) [杨双波 2013 62 157301]
-
[1] Zhang Y, Gu S L, Ye J D, Huang S M, Gu R, Chen B, Zhu S M, Zheng Y D 2013 Acta Phys. Sin. 62 150202 (in Chinese) [张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有抖 2013 62 150202]
[2] Dingle R, Stormer H L, Gossard A C 1978 Appl. Phys. Lett. 33 665
[3] Rauch C, Strasser G, Unterrainer K, Boxleitner W, Gornik E 1998 Phys. Rev. Lett. 81 3495
[4] Chandhuri S 1983 Phys. Rev. B 28 4480
[5] Yang Y, Fedorov G, Barbara P 2013 Phys. Rev. B 87 045403
[6] Wolf G V, Chuburin Y P 2012 Physica E-Low Dimensional System and Nanostructures 44 2063
[7] Turton R J, Jaros M 1989 Appl. Phys. Lett. 54 1986
[8] Ahn D, Chuang S L 1987 Phys. Rev. B 35 4149
[9] Noda S, Uemura T, Yamashita T, Sasaki A 1990 J. Appl. Phys. 68 6529
[10] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553
[11] Ruden P, Dohler G H 1983 Phys. Rev. B 27 3538
[12] Gaggero-Sager L M, Naumis G G, Munoz-Hernandez M A, Palma-Montiel V 2010 Physica B 405 4267
[13] Miller R C 1984 J. Appl. Phys. 56 1136
[14] Gaggero-Sager L M, Perez-Alvarez R 1996 Phys. Stat. Sol. (b) 197 105
[15] Zhang H F, Du P Y, Wong W J, Han G R 2005 Acta Phys. Sin. 54 5329 (in Chinese) [张海芳, 杜丕一, 翁文剑, 韩高荣 2005 54 5329]
[16] Chang C Y, Lin W, Hsu W C, Wu T S, Chang S Z, Wang C 1991 Jpn. J. Appl. Phys. 30 1158
[17] Dohler G H, Kunzel H, Olego D 1981 Phys. Rev. Lett. 47 864
[18] Hai G Q, Studart N, Peeters F M 1995 Phys. Rev. B 52 11273
[19] Schubert E F, Ullrich B, Harris T D, Cunningham J E 1988 Phys. Rev. B 38 8305
[20] Yue S L, Tang C C, Huang Y 2005 Physics 34 791(in Chinese) [岳双林, Tang C C, 黄阳 2005 物理 34 791]
[21] Zhang L, Lin F Y, Hu H F 2001 Acta Phys. Sin. 50 1378 (in Chinese) [张龙, 林凤英, 胡和方 2001 50 1378]
[22] Ozturk E 2009 Superlattices and Microstructures 46 752
[23] Peter A John 2010 Superlattices and Microstructures 47 442
[24] Fanyao Qu, Fonseca A L A, Nunes A O C 1998 Superlattices and Microstructures 23 1005
[25] Sari H, Kasapoglu E, Sokmen I, Balkan N 2003 Semicond. Sci. Technol. 18 470
[26] Niculescu E, Burileanu L, Radu A 2008 Superlattices and Microstructures 44 173
[27] Yang Shuangbo 2013 Acta Phys. Sin. 62 157301 (in Chinese) [杨双波 2013 62 157301]
Catalog
Metrics
- Abstract views: 6786
- PDF Downloads: 505
- Cited By: 0