-
The photodetached electron flux of H- in magnetic field near a metal surface is studied with a semi-classical open theory, and the relation between the electron flux distribution and classical trajectory is also revealed. The electron flux distributions are calculated at various magnetic field strengths, with a ion-surface distance given. The results show that with the increase of magnetic field strength, the interference pattern in the flux distribution becomes much more complicated because the number of the classical trajectories of the detached electrons contributing to the electron flux distribution increases. In addition, we find that as the energy of detached electron changes, the detached-electron flux distribution changes accordingly. Therefore, the interference pattern in the detached-electron flux distribution can be controlled by adjusting the magnetic field strength and the energy of detached electron. Our study will provide a new understanding of photo-detachment microscopy of anion in external field and surface, and can be used to guide the future experimental research on the anion photo-detachment microscopy.
-
Keywords:
- open-orbit theory /
- electron flux /
- metal surface /
- magnetic field
[1] Du M L, Delos J B 1988 Phys. Rev. A 38 1896
[2] Du M L, Delos J B 1988 Phys. Rev. A 38 1913
[3] Holle A, Wiebusch G, Main J, Hager B, Rottke H 1986 Phys. Rev. Lett. 56 2594
[4] Blondel C, Delsart C, Dulieu F 1996 Phys. Rev. Lett. 77 3755
[5] Blondel C, Delsart C 2001 Phys. Rev. A 64 052504
[6] Du M L 1989 Phys. Rev. A 40 4983
[7] Kramer T, Bracher C, Kleber M 2001 Europhys. Lett. 56 471
[8] Bracher C, Kramer T, Delos J B 2006 Phys. Rev. A 73 062114
[9] Bracher C, Delos J B 2006 Phys. Rev. Lett. 96 100404
[10] Gao S, Yang G C, Lin S L 2007 Eur. Phys. J. D 42 189
[11] Song X H, Lin S L 2003 Acta Phys. Sin. 52 1611 (in Chinese) [宋晓红, 林圣路 2003 52 1611]
[12] Zhao L B, Delos J B 2010 Phys. Rev. A 81 053417
[13] Huang K Y, Wang D H 2010 Acta Phys. Sin. 59 932 (in Chinese) [黄凯云, 王德华 2010 59 932]
[14] Tang T T, Wang D H, Huang K Y, Wang S S 2012 Acta Phys. Sin. 61 063202 (in Chinese) [唐田田, 王德华, 黄凯云, 王姗姗 2012 61 063202]
[15] Wang D H, Tang T T 2010 J. Electron Spectrosc. Relat. Phenom. 177 30
[16] Yang B C, Du M L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 035002
[17] Peters A D, Jaffé C, Delos J B 1997 Phys. Rev. A 56 331
[18] Afaq A, Du M L 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1309
-
[1] Du M L, Delos J B 1988 Phys. Rev. A 38 1896
[2] Du M L, Delos J B 1988 Phys. Rev. A 38 1913
[3] Holle A, Wiebusch G, Main J, Hager B, Rottke H 1986 Phys. Rev. Lett. 56 2594
[4] Blondel C, Delsart C, Dulieu F 1996 Phys. Rev. Lett. 77 3755
[5] Blondel C, Delsart C 2001 Phys. Rev. A 64 052504
[6] Du M L 1989 Phys. Rev. A 40 4983
[7] Kramer T, Bracher C, Kleber M 2001 Europhys. Lett. 56 471
[8] Bracher C, Kramer T, Delos J B 2006 Phys. Rev. A 73 062114
[9] Bracher C, Delos J B 2006 Phys. Rev. Lett. 96 100404
[10] Gao S, Yang G C, Lin S L 2007 Eur. Phys. J. D 42 189
[11] Song X H, Lin S L 2003 Acta Phys. Sin. 52 1611 (in Chinese) [宋晓红, 林圣路 2003 52 1611]
[12] Zhao L B, Delos J B 2010 Phys. Rev. A 81 053417
[13] Huang K Y, Wang D H 2010 Acta Phys. Sin. 59 932 (in Chinese) [黄凯云, 王德华 2010 59 932]
[14] Tang T T, Wang D H, Huang K Y, Wang S S 2012 Acta Phys. Sin. 61 063202 (in Chinese) [唐田田, 王德华, 黄凯云, 王姗姗 2012 61 063202]
[15] Wang D H, Tang T T 2010 J. Electron Spectrosc. Relat. Phenom. 177 30
[16] Yang B C, Du M L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 035002
[17] Peters A D, Jaffé C, Delos J B 1997 Phys. Rev. A 56 331
[18] Afaq A, Du M L 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1309
Catalog
Metrics
- Abstract views: 5741
- PDF Downloads: 569
- Cited By: 0