搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单靶溅射制备铜锌锡硫薄膜及原位退火研究

赵其琛 郝瑞亭 刘思佳 刘欣星 常发冉 杨敏 陆熠磊 王书荣

引用本文:
Citation:

单靶溅射制备铜锌锡硫薄膜及原位退火研究

赵其琛, 郝瑞亭, 刘思佳, 刘欣星, 常发冉, 杨敏, 陆熠磊, 王书荣

Fabrication of Cu2ZnSnS4 thin films by sputtering quaternary compound target and the research of in-situ annealing

Zhao Qi-Chen, Hao Rui-Ting, Liu Si-Jia, Liu Xin-Xing, Chang Fa-Ran, Yang Min, Lu Yi-Lei, Wang Shu-Rong
PDF
导出引用
  • 采用衬底加热溅射铜锌锡硫(CZTS)四元化合物单靶制备CZTS薄膜,并研究原位退火对制备薄膜的影响.结果表明:在溅射结束后快速升温并保持一段时间,所得到的样品相比于未原位退火的CZTS薄膜结晶质量更好,且表面更平整致密;原位退火后的CZTS薄膜太阳电池性能参数也相应地有所提升,其开路电压(Voc)为575 mV,短路电流密度(Jsc)为8.32 mA/cm2,光电转换效率达到1.82%.
    The kesterite compound Cu2ZnSnS4(CZTS) is one of the most interesting materials for absorber layers of thin-film solar cells,not only because it is composed of earth abundant and non-toxic elements,but also owing to the fact that its absorption coefficient is high (on the order of 104 cm-1) and its optimal band gap is 1.5 eV for single-junction solar cells. Plenty of methods are used to deposit the CZTS layer,such as evaporation,sputtering,spray-pyrolysis,sol-gel, pulsed laser deposition and electro-chemical deposition.Among these methods,sputtering is considered as one of the most viable deposition techniques for producing a large-scale panel of thin film solar cells with demonstrable productivity and easy adjustment.In this paper,Cu2ZnSnS4 thin films are prepared by in-situ annealing after being sputtered with a quaternary compound target.This technology can reduce the extrinsic defects in the thin film.It is desirable to control the growth of grain boundary,increase grain size and make the thin film more compact and smooth. The in-situ annealing is a method which can heat a work piece fast to a certain temperature and maintain the temperature for some time after sputtering.As is well known,one of the major reasons for affecting CZTS device performance is the low open circuit voltage (Voc),and it is also a challenge to obtain a high value because there are a lot of defect states at the grain boundaries.The experiment shows that using the method of in-situ annealing after sputtering can obtain large size grains and smooth and compact surface.The obtained thin films are Cu-poor,Zn-rich and Sn-poor,which can restrain the Cu vacancies (VCu) and anti-site defects (CuZn,SnZn,and SnCu).The free carrier concentration (NA) increases with the increase of Zn content,while the open circuit voltage of CZTS solar cells increases with the increase of NA. In order to develop CZTS solar cells based on the thin films,the n-type CdS buffer layer (70 nm) is grown using chemical bath deposition,and intrinsic ZnO (70 nm) and ZnO:Al (250 nm) films are deposited by RF-magnetron sputtering.In the end,Ni-Al metal grids as the top electrode are prepared by thermal evaporation.The final solar cells with an active area of 0.25 cm2 are determined by mechanical scribing.The solar cell based the CZTS film with in-situ annealing has better-performance parameters,its open circuit voltage and short-circuit current density are 575 mV and 8.32 mA/cm2,respectively.The photoelectric conversion efficiency of 1.82% is achieved.In order to enhance the efficiency of device,it is important to minimize Cu/Zn disorder in CZTS film and control the element composition by optimizing high-temperature crystallization process.The relevant research work on reducing defects in the films,increasing the carrier collection and enhancing the Jsc is under way. This method not only avoids the contamination caused by the external annealing but also simplifies the preparation process of the thin film,which greatly saves the preparation time of the solar cell and is beneficial to industrial production.annealing is a method which can heat a work piece fast to a certain temperature and maintain the temperature for some time after sputtering.As is well known,one of the major reasons for affecting CZTS device performance is the low open circuit voltage (Voc),and it is also a challenge to obtain a high value because there are a lot of defect states at the grain boundaries.The experiment shows that using the method of in-situ annealing after sputtering can obtain large size grains and smooth and compact surface.The obtained thin films are Cu-poor,Zn-rich and Sn-poor,which can restrain the Cu vacancies (VCu) and anti-site defects (CuZn,SnZn,and SnCu).The free carrier concentration (NA) increases with the increase of Zn content,while the open circuit voltage of CZTS solar cells increases with the increase of NA. In order to develop CZTS solar cells based on the thin films,the n-type CdS buffer layer (70 nm) is grown using chemical bath deposition,and intrinsic ZnO (70 nm) and ZnO:Al (250 nm) films are deposited by RF-magnetron sputtering.In the end,Ni-Al metal grids as the top electrode are prepared by thermal evaporation.The final solar cells with an active area of 0.25 cm2 are determined by mechanical scribing.The solar cell based the CZTS film with in-situ annealing has better-performance parameters,its open circuit voltage and short-circuit current density are 575 mV and 8.32 mA/cm2,respectively.The photoelectric conversion efficiency of 1.82% is achieved.In order to enhance the efficiency of device,it is important to minimize Cu/Zn disorder in CZTS film and control the element composition by optimizing high-temperature crystallization process.The relevant research work on reducing defects in the films,increasing the carrier collection and enhancing the Jsc is under way. This method not only avoids the contamination caused by the external annealing but also simplifies the preparation process of the thin film,which greatly saves the preparation time of the solar cell and is beneficial to industrial production.
      通信作者: 郝瑞亭, ruitinghao@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61774130,11474248,61176127,61006085)、国际科技合作重点项目(批准号:2011DFA62380)和教育部博士点基金(批准号:20105303120002)资助的课题.
      Corresponding author: Hao Rui-Ting, ruitinghao@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774130, 11474248, 61176127, 61006085), the Key Program for International ST Cooperation Projects of China (Grant No. 2011DFA62380), and the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 20105303120002).
    [1]

    Jiang M L, Yan X Z 2013 Sol. Cells Res. Appl. Prospect.5 107

    [2]

    Liu H, Xue Y M, Qiao Z X, Li W, Zhang C, Yin F H, Feng S J 2015 Acta Phys. Sin. 64 068801 (in Chinese) [刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君 2015 64 068801]

    [3]

    Yan C, Chen J, Liu F Y 2014 J. Alloy. Compod. 610 486

    [4]

    Wang W, Winkler M T 2014 Energy Mater. 4 7

    [5]

    Kato T, Hiroi H, Sakai N 2012 Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition Frankfurt, Germany 2236

    [6]

    Liu F F, He Q, Zhou Z Q, Sun Y 2014 Acta Phys. Sin.63 067203 (in Chinese) [刘芳芳, 何青, 周志强, 孙云 2014 63 067203]

    [7]

    Liu F F, Sun Y, He Q 2014 Acta Phys. Sin. 63 047201 (in Chinese) [刘芳芳, 孙云, 何青 2014 63 047201]

    [8]

    Mao Q N, Zhang X Y, Li X G, He J X, Yu P R, Wang D 2014 Acta Phys. Sin. 63 118802 (in Chinese) [毛启楠, 张晓勇, 李学耕, 贺劲鑫, 于平荣, 王东 2014 63 118802]

    [9]

    Brammertz G, Buffière M, Oueslati S 2013 Appl. Phys. Lett. 103 163904

    [10]

    Katagiri H, Jimbo K, Maw W S 2009 Thin Solid Films 517 2455

    [11]

    Xie M, Zhuang D, Zhao M, Li B J, Cao M J, Song J 2014 Vacuum 101 146

    [12]

    He J, Sun L, Chen Y, Jiang J C, Yang P X, Chu J H 2014 RSC Adv. 4 43080

    [13]

    Jo Y H, Mohanty B C, Yeon D H 2015 Sol. Energy Mater. Sol. Cells 132 136

    [14]

    Nakamura R, Kunihiko T, Hisao U 2014 Jpn. J. Appl. Phys. 53 02BC10

    [15]

    Lin Y P, Chi Y F, Hsieh T E 2016 J. Alloy. Compod. 654 498

    [16]

    Shi G, Li Y J, Zuo S H, Jiang J C, Hu G J, Chu J H 2011 Infrared Millim. Waves. 30 1001

    [17]

    Jiang F, Ikeda S 2014 Energy Mater. 4 403

    [18]

    Ericson T, Kubart T, Scragg J J 2012 Thin Solid Films 520 7093

    [19]

    Gurel T, Sevik C, Ça G 2011 Phys. Rev. B: Condens. 84 896

    [20]

    Tanaka T, Kawasaki D 2016 Phys. Status Solidi Topics 36 67

    [21]

    Chalapathi U, Jayasree Y, Uthana S, Sundara R V 2015 Vacuum 117 121

    [22]

    Katagiri H, Jimbo K 2011 IEEE Photovolt. Spec. Conf. 23 003516

    [23]

    Tanaka K, Fukui Y, Moritake N, Uchiki H 2011 Sol.Energy Mater. Sol. Cells 95 838

    [24]

    Chen S Y, Wang L W, Walsh A 2012 Appl. Phys. 101 223901

    [25]

    Fernandes P A, Salom P M P, Cunha A F 2010 Appl. Phys. 43 215403

    [26]

    Sammi K, Misol O, Woo K K 2013 Thin Solid Films. 549 59

    [27]

    Tapas K C, Devendra T 2012 Sol. Energy Mater. Sol. Cells 101 46

    [28]

    Zhang J, Long B, Cheng S Y 2013 Int. J. Photoenergy ID 986076 1

    [29]

    Vipul K, Patel K K, Patel S J 2013 J. Crystal Growth 362 174

    [30]

    Li J, Wang H, Luo M 2016 Sol. Energy Mater. Sol. Cells 149 242

    [31]

    Li J, Kim S Y, Nam D 2017 Sol. Energy Mater. Sol. Cells 159 447

    [32]

    Sun K W, Su Z H, Han Z L, Liu F Y, Lai T Q, Li J, Liu Y X 2014 Acta Phys. Sin. 63 018801 (in Chinese) [孙凯文, 苏正华, 韩自力, 刘芳洋, 赖延清, 李劼, 刘业翔 2014 63 018801]

    [33]

    Kong F T, Gunawan O, Kuwahara M 2016 Sol. Energy Mater. Sol. Cells 6 184

  • [1]

    Jiang M L, Yan X Z 2013 Sol. Cells Res. Appl. Prospect.5 107

    [2]

    Liu H, Xue Y M, Qiao Z X, Li W, Zhang C, Yin F H, Feng S J 2015 Acta Phys. Sin. 64 068801 (in Chinese) [刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君 2015 64 068801]

    [3]

    Yan C, Chen J, Liu F Y 2014 J. Alloy. Compod. 610 486

    [4]

    Wang W, Winkler M T 2014 Energy Mater. 4 7

    [5]

    Kato T, Hiroi H, Sakai N 2012 Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition Frankfurt, Germany 2236

    [6]

    Liu F F, He Q, Zhou Z Q, Sun Y 2014 Acta Phys. Sin.63 067203 (in Chinese) [刘芳芳, 何青, 周志强, 孙云 2014 63 067203]

    [7]

    Liu F F, Sun Y, He Q 2014 Acta Phys. Sin. 63 047201 (in Chinese) [刘芳芳, 孙云, 何青 2014 63 047201]

    [8]

    Mao Q N, Zhang X Y, Li X G, He J X, Yu P R, Wang D 2014 Acta Phys. Sin. 63 118802 (in Chinese) [毛启楠, 张晓勇, 李学耕, 贺劲鑫, 于平荣, 王东 2014 63 118802]

    [9]

    Brammertz G, Buffière M, Oueslati S 2013 Appl. Phys. Lett. 103 163904

    [10]

    Katagiri H, Jimbo K, Maw W S 2009 Thin Solid Films 517 2455

    [11]

    Xie M, Zhuang D, Zhao M, Li B J, Cao M J, Song J 2014 Vacuum 101 146

    [12]

    He J, Sun L, Chen Y, Jiang J C, Yang P X, Chu J H 2014 RSC Adv. 4 43080

    [13]

    Jo Y H, Mohanty B C, Yeon D H 2015 Sol. Energy Mater. Sol. Cells 132 136

    [14]

    Nakamura R, Kunihiko T, Hisao U 2014 Jpn. J. Appl. Phys. 53 02BC10

    [15]

    Lin Y P, Chi Y F, Hsieh T E 2016 J. Alloy. Compod. 654 498

    [16]

    Shi G, Li Y J, Zuo S H, Jiang J C, Hu G J, Chu J H 2011 Infrared Millim. Waves. 30 1001

    [17]

    Jiang F, Ikeda S 2014 Energy Mater. 4 403

    [18]

    Ericson T, Kubart T, Scragg J J 2012 Thin Solid Films 520 7093

    [19]

    Gurel T, Sevik C, Ça G 2011 Phys. Rev. B: Condens. 84 896

    [20]

    Tanaka T, Kawasaki D 2016 Phys. Status Solidi Topics 36 67

    [21]

    Chalapathi U, Jayasree Y, Uthana S, Sundara R V 2015 Vacuum 117 121

    [22]

    Katagiri H, Jimbo K 2011 IEEE Photovolt. Spec. Conf. 23 003516

    [23]

    Tanaka K, Fukui Y, Moritake N, Uchiki H 2011 Sol.Energy Mater. Sol. Cells 95 838

    [24]

    Chen S Y, Wang L W, Walsh A 2012 Appl. Phys. 101 223901

    [25]

    Fernandes P A, Salom P M P, Cunha A F 2010 Appl. Phys. 43 215403

    [26]

    Sammi K, Misol O, Woo K K 2013 Thin Solid Films. 549 59

    [27]

    Tapas K C, Devendra T 2012 Sol. Energy Mater. Sol. Cells 101 46

    [28]

    Zhang J, Long B, Cheng S Y 2013 Int. J. Photoenergy ID 986076 1

    [29]

    Vipul K, Patel K K, Patel S J 2013 J. Crystal Growth 362 174

    [30]

    Li J, Wang H, Luo M 2016 Sol. Energy Mater. Sol. Cells 149 242

    [31]

    Li J, Kim S Y, Nam D 2017 Sol. Energy Mater. Sol. Cells 159 447

    [32]

    Sun K W, Su Z H, Han Z L, Liu F Y, Lai T Q, Li J, Liu Y X 2014 Acta Phys. Sin. 63 018801 (in Chinese) [孙凯文, 苏正华, 韩自力, 刘芳洋, 赖延清, 李劼, 刘业翔 2014 63 018801]

    [33]

    Kong F T, Gunawan O, Kuwahara M 2016 Sol. Energy Mater. Sol. Cells 6 184

  • [1] 田杉杉, 高倩, 高泽冉, 熊雨晨, 丛日东, 于威. 单靶磁控溅射Cu(In, Ga)Se2太阳电池的背接触界面设计.  , 2024, 73(17): 178801. doi: 10.7498/aps.73.20240732
    [2] 党新志, 张仁刚, 张鹏, 于润升, 况鹏, 曹兴忠, 王宝义. 不同硫压退火对溅射沉积ZnS薄膜性能的影响.  , 2023, 72(3): 034207. doi: 10.7498/aps.72.20221737
    [3] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构.  , 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [4] 王延峰, 谢希成, 刘晓洁, 韩冰, 武晗晗, 连宁宁, 杨富, 宋庆功, 裴海林, 李俊杰. F, Al共掺杂ZnO透明导电薄膜的制备及掺杂机理研究.  , 2020, 69(19): 197801. doi: 10.7498/aps.69.20200580
    [5] 王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇. V掺杂ZnO透明导电薄膜研究.  , 2016, 65(8): 087802. doi: 10.7498/aps.65.087802
    [6] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述.  , 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [7] 刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君. 铜锌锡硫薄膜材料及其器件应用研究进展.  , 2015, 64(6): 068801. doi: 10.7498/aps.64.068801
    [8] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究.  , 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [9] 陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良. 外加磁场对射频磁控溅射制备铝掺杂氧化锌薄膜影响的研究.  , 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [10] 张鑫鑫, 靳映霞, 叶晓松, 王茺, 杨宇. 高速率沉积磁控溅射技术制备Ge点的退火生长研究.  , 2014, 63(15): 156802. doi: 10.7498/aps.63.156802
    [11] 王延峰, 张晓丹, 黄茜, 刘阳, 魏长春, 赵颖. 室温制备低电阻率高透过率H, W共掺杂ZnO薄膜.  , 2013, 62(1): 017803. doi: 10.7498/aps.62.017803
    [12] 王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖. B掺杂ZnO透明导电薄膜的实验及理论研究.  , 2013, 62(24): 247802. doi: 10.7498/aps.62.247802
    [13] 张传军, 邬云骅, 曹鸿, 高艳卿, 赵守仁, 王善力, 褚君浩. 不同衬底和CdCl2退火对磁控溅射CdS薄膜性能的影响.  , 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [14] 王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹. W掺杂ZnO透明导电薄膜的理论及实验研究.  , 2012, 61(13): 137801. doi: 10.7498/aps.61.137801
    [15] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征.  , 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [16] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响.  , 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [17] 张仁刚, 王宝义, 张 辉, 马创新, 魏 龙. 不同参数溅射的ZnO薄膜硫化后的特性.  , 2005, 54(5): 2389-2393. doi: 10.7498/aps.54.2389
    [18] 王宝义, 张仁刚, 张 辉, 万冬云, 魏 龙. ZnO退火条件对硫化法制备的ZnS薄膜特性的影响.  , 2005, 54(4): 1874-1878. doi: 10.7498/aps.54.1874
    [19] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜.  , 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [20] 谢大弢, 赵夔, 王莉芳, 朱凤, 全胜文, 孟铁军, 张保澄, 陈佳洱. 用磁控溅射和真空硒化退火方法制备高质量的铜铟硒多晶薄膜.  , 2002, 51(6): 1377-1382. doi: 10.7498/aps.51.1377
计量
  • 文章访问数:  6195
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-25
  • 修回日期:  2017-07-04
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map