Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of V doped ZnO transparent conductive oxide films

Wang Yan-Feng Meng Xu-Dong Zheng Wei Song Qing-Gong Zhai Chang-Xin Guo Bing Zhang Yue Yang Fu Nan Jing-Yu

Citation:

Investigation of V doped ZnO transparent conductive oxide films

Wang Yan-Feng, Meng Xu-Dong, Zheng Wei, Song Qing-Gong, Zhai Chang-Xin, Guo Bing, Zhang Yue, Yang Fu, Nan Jing-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The performance of the ZnO film that is an indispensable part of pin-type Si-based thin-film solar cells, plays a crucial role in high-efficiency thin-film solar cells and also forms a significant part in photovoltaic research and development. In this paper, low resistivity and wide broadband spectrum transmittance vanadium (V) doped ZnO (VZO) films are successfully fabricated on Corning XG substrates at various substrate temperatures (STs). The properties of VZO films are investigated by the radio-frequency magnetron sputtering technique and plane wave pseudo-potential method based on the density-functional theory. The experimental results demonstrate that all the VZO flms have (002) preferred orientation with the c-axis perpendicular to the substrate, and the crystalline quality is found to increase with the substrate temperature (ST) rising up to 280 ℃ and decrease when the ST increases further. The optimal VZO film is achieved at 280 ℃ with a resistivity of 3.810-3 cm and an average transmittance of more than 85% in a range of 500-2000 nm. The theoretical result shows that after incorporation of V the Fermi level goes through the conduction band, showing a typical n-type metallic characteristic. The carriers originate from the orbits of V 3d and O 2p. The calculated lattice constants and mobility for VZO film are in agreement well with the experimental results. The consistency of the theoretical results with the experimental results shows that the VZO thin film has a great potential application as a front contact in high-efficiency thin film solar cells.
      Corresponding author: Nan Jing-Yu, njy1961@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11404088), the Natural Science Foundation of Hebei Province, China (Grant No. F2015405011), the Ordinary University Youth Talent Project of Hebei Province, China (Grant No. BJ2014003), the Science and Technology Support Program of Hebei Province, China (Grant No. 11215168), the Major Projects of Hebei North University, China (Grant No. ZD201401), the Doctoral Scientific Research Foundation of Hebei North University, China, the Youth Fund of Hebei North University, China (Grant No. Q2014001), the Project of the Department of Education of Hebei Province, China (Grant No. QN2015148), and the Science and Technology Research and Development Program Self-Funded Project of Zhangjiakou City of 2013, China (Grant No. 20131017B).
    [1]

    Minami T 2005 Semicond. Sci. Technol. 20 S35

    [2]

    Ding L, Fanni L, Messerschmidt D, Zabihzadeh S, Morales M M, Nicolay S, Ballif C 2014 Sol. Energy Mater. Sol. Cells 128 378

    [3]

    Meier M, Paetzold U W, Prmpers M, Merdzhanova T, Carius R, Gordijn A 2014 Prog. Photovolt: Res. Appl. 22 1226

    [4]

    Sang B S, Kushiya K, Okumura D, Yamase O 2001 Sol. Energy Mater. Sol. Cells 67 237

    [5]

    Park H K, Heo J 2014 Appl. Surf. Sci. 309 133

    [6]

    Park S M, Ikegami T, Ebihara K 2006 Thin Solid Films 513 90

    [7]

    Huang Q, Zhang D K, Liu B F, Bai L S, Ni J, Zhao Y, Zhang X D 2015 Sol. Energy Mater. Sol. Cells 136 11

    [8]

    Agashe C, Kluth O, Schpe G, Siekmann H, Hpkes J, Rech B 2003 Thin Solid Films 442 167

    [9]

    Ma Q B, Ye Z Z, He H P, Luo Y, Zhu L P, Huang J Y, Zhang Y Z, Zhao B H 2008 Chem. Phys. Chem. 9 529

    [10]

    Meng Y, Yang X L, Chen H X, Shen J, Jiang Y M, Zhang Z J, Hua Z Y 2001 Thin Solid Films 394 219

    [11]

    Gupta R K, Ghosh K, Mishra S R, Kahol P K 2008 Appl. Surf. Sci. 254 1661

    [12]

    Zhang C, Chen X L, Wang F, Yan C B, Huang Q, Zhao Y, Zhang X D, Geng X H 2012 Acta Phys. Sin. 61 238101 (in Chinese) [张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华 2012 61 238101]

    [13]

    Wu M Y, Yu S H, Chen G H, He L, Yang L, Zhang W F 2015 Appl. Surf. Sci. 324 791

    [14]

    Cao F, Wand Y D, Liu D L, Yin J Z, Guo B J, Li L, An Y P 2009 Chin. Phys. Lett. 26 034210

    [15]

    Qadri S B, Kim H, Horwitz J S, Chrisey D B 2000 J. Appl. Phys. 88 6564

    [16]

    Ngoma B D, Mpahane T, Manyala N, Nemraoui O, Buttner U, Kana J B, Fasasi A Y, Maaza M, Bey A C 2009 Appl. Surf. Sci. 255 4153

    [17]

    Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805

    [18]

    Schlenker E, Bakina A, Postelsa B, Mofor A C, Kreyea M, Ronning C, Sievers S, Albrecht M, Siegner U, Kling R, Waag A 2007 Superlattices Microstruct. 42 236

    [19]

    Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801 (in Chinese) [王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹 2012 61 137801]

    [20]

    Wang Y F, Zhang X D, Huang Q, Yang F, Meng X D, Song Q G, Zhao Y 2013 Acta Phys. Sin. 62 247802 (in Chinese) [王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖 2013 62 247802]

    [21]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [24]

    Wang Q B, Zhou C, Wu J, L T 2013 Opt. Commun. 297 79

    [25]

    Sheetz R M, Ponomareva I, Richter E, Andriotis A N, Menon M 2009 Phys. Rev. B 80 195314

    [26]

    Wang Y F, Zhang X D, Huang Q, Yang F, Liang J H, Zhang D K, Zhao Y 2014 Vacuum 107 6

    [27]

    zgr , Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morko H 2005 J. Appl. Phys. 98 041301

    [28]

    Ellmer K 2000 J. Phys. D: Appl. Phys. 33 R17

    [29]

    Singh S, Srinivasa R S, Major S S 2007 Thin Solid Films 515 8718

    [30]

    Li X Y, Li H J, Wang Z J, Xia H, Xiong Z Y, Wang J X, Yang B C 2009 Opt. Commun. 282 247

    [31]

    Miyata T, Suzuki S, Ishii M, Minami T 2002 Thin Solid Films 411 76

    [32]

    Pei Z L, Sun C, Tan M H, Xiao J Q, Guan D H, Huang R F, Wen L S 2001 J. Appl. Phys. 90 3432

    [33]

    Desgreniers S 1998 Phys. Rev. B: Condens. Matter 58 14102

    [34]

    Wang Y F, Huang H Y, Meng X D, Yang F, Nan J Y, Song Q G, Huang Q, Zhao Y, Zhang X D 2015 J. Alloys Compd. 636 102

    [35]

    Burstein E 1954 Phys. Rev. 93 632

    [36]

    Moss T S 1954 Proc. Phys. Soc. London, Sect. B 67 775

    [37]

    Yang P, Gao X H 1981 Journal of Shanxi University (Natural Science Edition) 4 40 (in Chinese) [杨频, 高孝恢 1981 山西大学学报(自然科学版) 4 40]

  • [1]

    Minami T 2005 Semicond. Sci. Technol. 20 S35

    [2]

    Ding L, Fanni L, Messerschmidt D, Zabihzadeh S, Morales M M, Nicolay S, Ballif C 2014 Sol. Energy Mater. Sol. Cells 128 378

    [3]

    Meier M, Paetzold U W, Prmpers M, Merdzhanova T, Carius R, Gordijn A 2014 Prog. Photovolt: Res. Appl. 22 1226

    [4]

    Sang B S, Kushiya K, Okumura D, Yamase O 2001 Sol. Energy Mater. Sol. Cells 67 237

    [5]

    Park H K, Heo J 2014 Appl. Surf. Sci. 309 133

    [6]

    Park S M, Ikegami T, Ebihara K 2006 Thin Solid Films 513 90

    [7]

    Huang Q, Zhang D K, Liu B F, Bai L S, Ni J, Zhao Y, Zhang X D 2015 Sol. Energy Mater. Sol. Cells 136 11

    [8]

    Agashe C, Kluth O, Schpe G, Siekmann H, Hpkes J, Rech B 2003 Thin Solid Films 442 167

    [9]

    Ma Q B, Ye Z Z, He H P, Luo Y, Zhu L P, Huang J Y, Zhang Y Z, Zhao B H 2008 Chem. Phys. Chem. 9 529

    [10]

    Meng Y, Yang X L, Chen H X, Shen J, Jiang Y M, Zhang Z J, Hua Z Y 2001 Thin Solid Films 394 219

    [11]

    Gupta R K, Ghosh K, Mishra S R, Kahol P K 2008 Appl. Surf. Sci. 254 1661

    [12]

    Zhang C, Chen X L, Wang F, Yan C B, Huang Q, Zhao Y, Zhang X D, Geng X H 2012 Acta Phys. Sin. 61 238101 (in Chinese) [张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华 2012 61 238101]

    [13]

    Wu M Y, Yu S H, Chen G H, He L, Yang L, Zhang W F 2015 Appl. Surf. Sci. 324 791

    [14]

    Cao F, Wand Y D, Liu D L, Yin J Z, Guo B J, Li L, An Y P 2009 Chin. Phys. Lett. 26 034210

    [15]

    Qadri S B, Kim H, Horwitz J S, Chrisey D B 2000 J. Appl. Phys. 88 6564

    [16]

    Ngoma B D, Mpahane T, Manyala N, Nemraoui O, Buttner U, Kana J B, Fasasi A Y, Maaza M, Bey A C 2009 Appl. Surf. Sci. 255 4153

    [17]

    Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805

    [18]

    Schlenker E, Bakina A, Postelsa B, Mofor A C, Kreyea M, Ronning C, Sievers S, Albrecht M, Siegner U, Kling R, Waag A 2007 Superlattices Microstruct. 42 236

    [19]

    Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801 (in Chinese) [王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹 2012 61 137801]

    [20]

    Wang Y F, Zhang X D, Huang Q, Yang F, Meng X D, Song Q G, Zhao Y 2013 Acta Phys. Sin. 62 247802 (in Chinese) [王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖 2013 62 247802]

    [21]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [24]

    Wang Q B, Zhou C, Wu J, L T 2013 Opt. Commun. 297 79

    [25]

    Sheetz R M, Ponomareva I, Richter E, Andriotis A N, Menon M 2009 Phys. Rev. B 80 195314

    [26]

    Wang Y F, Zhang X D, Huang Q, Yang F, Liang J H, Zhang D K, Zhao Y 2014 Vacuum 107 6

    [27]

    zgr , Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morko H 2005 J. Appl. Phys. 98 041301

    [28]

    Ellmer K 2000 J. Phys. D: Appl. Phys. 33 R17

    [29]

    Singh S, Srinivasa R S, Major S S 2007 Thin Solid Films 515 8718

    [30]

    Li X Y, Li H J, Wang Z J, Xia H, Xiong Z Y, Wang J X, Yang B C 2009 Opt. Commun. 282 247

    [31]

    Miyata T, Suzuki S, Ishii M, Minami T 2002 Thin Solid Films 411 76

    [32]

    Pei Z L, Sun C, Tan M H, Xiao J Q, Guan D H, Huang R F, Wen L S 2001 J. Appl. Phys. 90 3432

    [33]

    Desgreniers S 1998 Phys. Rev. B: Condens. Matter 58 14102

    [34]

    Wang Y F, Huang H Y, Meng X D, Yang F, Nan J Y, Song Q G, Huang Q, Zhao Y, Zhang X D 2015 J. Alloys Compd. 636 102

    [35]

    Burstein E 1954 Phys. Rev. 93 632

    [36]

    Moss T S 1954 Proc. Phys. Soc. London, Sect. B 67 775

    [37]

    Yang P, Gao X H 1981 Journal of Shanxi University (Natural Science Edition) 4 40 (in Chinese) [杨频, 高孝恢 1981 山西大学学报(自然科学版) 4 40]

  • [1] Tian Shan-Shan, Gao Qian, Gao Ze-Ran, Xiong Yu-Chen, Cong Ri-Dong, Yu Wei. Design of back-contact interface of Cu(In,Ga)Se2 solar cells by single-target magnetron sputtering. Acta Physica Sinica, 2024, 73(17): 178801. doi: 10.7498/aps.73.20240732
    [2] Cao Yu, Jiang Jia-Hao, Liu Chao-Ying, Ling Tong, Meng Dan, Zhou Jing, Liu Huan, Wang Jun-Yao. Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells. Acta Physica Sinica, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [3] Wang Yan-Feng, Xie Xi-Cheng, Liu Xiao-Jie, Han Bing, Wu Han-Han, Lian Ning-Ning, Yang Fu, Song Qing-Gong, Pei Hai-Lin, Li Jun-Jie. Insight of the doping mechanism of F and Al co-doped ZnO transparent conductive films. Acta Physica Sinica, 2020, 69(19): 197801. doi: 10.7498/aps.69.20200580
    [4] Zhao Qi-Chen, Hao Rui-Ting, Liu Si-Jia, Liu Xin-Xing, Chang Fa-Ran, Yang Min, Lu Yi-Lei, Wang Shu-Rong. Fabrication of Cu2ZnSnS4 thin films by sputtering quaternary compound target and the research of in-situ annealing. Acta Physica Sinica, 2017, 66(22): 226801. doi: 10.7498/aps.66.226801
    [5] Geng Chao, Zheng Yi, Zhang Yong-Zhe, Yan Hui. Optical design of nanowire array on silicon thin film solar cell. Acta Physica Sinica, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [6] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [7] Jia Xiao-Jie, Ai Bin, Xu Xin-Xiang, Yang Jiang-Hai, Deng You-Jun, Shen Hui. Two-dimensional device simulation and performance optimization of crystalline silicon selective-emitter solar cell. Acta Physica Sinica, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [8] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [9] Wang Yan-Feng, Zhang Xiao-Dan, Huang Qian, Liu Yang, Wei Chang-Chun, Zhao Ying. Room temperature deposition of highly conductive and transparent H and W co-doped ZnO film. Acta Physica Sinica, 2013, 62(1): 017803. doi: 10.7498/aps.62.017803
    [10] Wang Yan-Feng, Zhang Xiao-Dan, Huang Qian, Yang Fu, Meng Xu-Dong, Song Qing-Gong, Zhao Ying. Experimental and theoretical investigation of transparent and conductive B doped ZnO film. Acta Physica Sinica, 2013, 62(24): 247802. doi: 10.7498/aps.62.247802
    [11] Wang Yan-Feng, Huang Qian, Song Qing-Gong, Liu Yang, Wei Chang-Chun, Zhao Ying, Zhang Xiao-Dan. Theoretical and experimental investigation of W doped ZnO. Acta Physica Sinica, 2012, 61(13): 137801. doi: 10.7498/aps.61.137801
    [12] Zhang Kun, Liu Fang-Yang, Lai Yan-Qing, Li Yi, Yan Chang, Zhang Zhi-An, Li Jie, Liu Ye-Xiang. In situ growth and characterization of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering for solar cells. Acta Physica Sinica, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [13] Li Lin-Na, Chen Xin-Liang, Wang Fei, Sun Jian, Zhang De-Kun, Geng Xin-Hua, Zhao Ying. Effects of hydrogen flux on aluminum doped zinc thin films by pulsed magnetron sputtering. Acta Physica Sinica, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [14] Cai Hong-Kun, Tao Ke, Wang Lin-Shen, Zhao Jing-Fang, Sui Yan-Ping, Zhang De-Xian. Interface treatment of amorphous silicon thin film solar cells on flexible substrate. Acta Physica Sinica, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [15] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [16] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [17] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Shi Cheng-Wu, Kong Fan-Tai, Hu Lin-Hua, Pan Xu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [18] Wang Bao-Yi, Zhang Ren-Gang, Zhang Hui, Wan Dong-Yun, Wei Long. Influence of annealing conditions of ZnO films on the properties of ZnS films pr epared by sulfurizing ZnO films. Acta Physica Sinica, 2005, 54(4): 1874-1878. doi: 10.7498/aps.54.1874
    [19] Zhang Ren-Gang, Wang Bao-Yi, Zhang Hui, Ma Chuang-Xin, Wei Long. The properties of the as-sputtered ZnO films under different deposition parameters after sulfidation. Acta Physica Sinica, 2005, 54(5): 2389-2393. doi: 10.7498/aps.54.2389
    [20] . Acta Physica Sinica, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
Metrics
  • Abstract views:  6651
  • PDF Downloads:  198
  • Cited By: 0
Publishing process
  • Received Date:  03 September 2015
  • Accepted Date:  28 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map